Matches in SemOpenAlex for { <https://semopenalex.org/work/W51996013> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W51996013 startingPage "28" @default.
- W51996013 abstract "The wavelength band between 60 and 120 ym is particularly important for observations of the interstellar medium, for it is here that the cores of galactic molecular clouds radiate most of their energy. Both continuum radiation from dust grains and line radiation from ions, atoms, and molecules are important cooling mechanisms for material warmed b the intense UV radiation from newly formed sfars. Velocity gradients within the clouds are so small that the resolving power of the spectrometer should exceed 106, if the intrinsic line shapes (and the information they contain) are not to be degraded.. Heterodyne receivers capable of such resolution have so far only been operated at wavelengths >118 ym (2.5 THz) [1]. Of particular interest to astronomers are observations of the fine structure line from neutral oxygen (0 I) at 63 jim (4.75 THz). This transition is the major cooling line for the warm (T 200 K) and dense (n > 10cm -3 ) gas in the cloud core. Of course this radiation cannot penetrate the earth's atmosphere, so all observations must be done above the tropopause with aircraft or space-borne instruments. To date only grating and Fabry-Perot spectrometers have been successfully used for observations of the oxygen line. albeit with far less spectral resolution than that possible with heterodyne techniques. We can estimate some of the line parameters for the oxygen line by comparison with another fine structure line emitted by these clouds: the 158inn line of ionized carbon (C II). This longer wavelength line has been observed with a laser heterodyne spectrometer aboard NASA's Kuiper Airborne Observatory (K AO) for over 7 years now [2]. Heterodyne observations at 3 MHz (0.5 km sI ) spectral resolution have shown that the C emission may in some sources be optically thick, in which case its function as a major cooling mechanism is somewhat impaired. For the conditions expected in cloud cores, emission. from the 63 ,um line should be even more optically thick (saturated), but no direct spectroscopic evidence exists. Up to now most theoretical analyses of excitation temperatures in photodissociated gas have been based simply on the observed intensity ratio of unresolved 158 ym carbon and 63 ym oxygen lines, which are assumed to be optically thin. Therefore the derived excitation temperatures (and element abundances) could be erroneous if either line is optically thick. A better way to determine the gas excitation temperature would be to measure the peak brightness temperatures of resolved 0 I and C II lines. If a case for optically thick emission can be made, then the peak temperature yields the excitation temperature directly." @default.
- W51996013 created "2016-06-24" @default.
- W51996013 creator A5041623688 @default.
- W51996013 date "1995-03-01" @default.
- W51996013 modified "2023-09-26" @default.
- W51996013 title "A Practical Schottky Mixer for 5 THz" @default.
- W51996013 cites W2043653867 @default.
- W51996013 cites W2076811009 @default.
- W51996013 cites W2078102957 @default.
- W51996013 cites W2094546050 @default.
- W51996013 hasPublicationYear "1995" @default.
- W51996013 type Work @default.
- W51996013 sameAs 51996013 @default.
- W51996013 citedByCount "12" @default.
- W51996013 countsByYear W519960132017 @default.
- W51996013 crossrefType "journal-article" @default.
- W51996013 hasAuthorship W51996013A5041623688 @default.
- W51996013 hasConcept C107816215 @default.
- W51996013 hasConcept C120665830 @default.
- W51996013 hasConcept C121332964 @default.
- W51996013 hasConcept C124967146 @default.
- W51996013 hasConcept C1276947 @default.
- W51996013 hasConcept C153385146 @default.
- W51996013 hasConcept C198352243 @default.
- W51996013 hasConcept C2524010 @default.
- W51996013 hasConcept C33390570 @default.
- W51996013 hasConcept C33923547 @default.
- W51996013 hasConcept C4839761 @default.
- W51996013 hasConcept C6260449 @default.
- W51996013 hasConceptScore W51996013C107816215 @default.
- W51996013 hasConceptScore W51996013C120665830 @default.
- W51996013 hasConceptScore W51996013C121332964 @default.
- W51996013 hasConceptScore W51996013C124967146 @default.
- W51996013 hasConceptScore W51996013C1276947 @default.
- W51996013 hasConceptScore W51996013C153385146 @default.
- W51996013 hasConceptScore W51996013C198352243 @default.
- W51996013 hasConceptScore W51996013C2524010 @default.
- W51996013 hasConceptScore W51996013C33390570 @default.
- W51996013 hasConceptScore W51996013C33923547 @default.
- W51996013 hasConceptScore W51996013C4839761 @default.
- W51996013 hasConceptScore W51996013C6260449 @default.
- W51996013 hasLocation W519960131 @default.
- W51996013 hasOpenAccess W51996013 @default.
- W51996013 hasPrimaryLocation W519960131 @default.
- W51996013 hasRelatedWork W1627652917 @default.
- W51996013 hasRelatedWork W1971889702 @default.
- W51996013 hasRelatedWork W1981220177 @default.
- W51996013 hasRelatedWork W2003788353 @default.
- W51996013 hasRelatedWork W2019600285 @default.
- W51996013 hasRelatedWork W2020293531 @default.
- W51996013 hasRelatedWork W2022172979 @default.
- W51996013 hasRelatedWork W2025120832 @default.
- W51996013 hasRelatedWork W2029673323 @default.
- W51996013 hasRelatedWork W2074485709 @default.
- W51996013 hasRelatedWork W2083933400 @default.
- W51996013 hasRelatedWork W2085305848 @default.
- W51996013 hasRelatedWork W2098679278 @default.
- W51996013 hasRelatedWork W2110004360 @default.
- W51996013 hasRelatedWork W2552965055 @default.
- W51996013 hasRelatedWork W298069856 @default.
- W51996013 hasRelatedWork W3088755431 @default.
- W51996013 hasRelatedWork W847656469 @default.
- W51996013 hasRelatedWork W1653492457 @default.
- W51996013 hasRelatedWork W194872799 @default.
- W51996013 isParatext "false" @default.
- W51996013 isRetracted "false" @default.
- W51996013 magId "51996013" @default.
- W51996013 workType "article" @default.