Matches in SemOpenAlex for { <https://semopenalex.org/work/W52057548> ?p ?o ?g. }
- W52057548 abstract "Growth hormone (GH) secretion declines with increased adiposity, culminating in GH deficiency in obesity. Dysfunction of the melanocortin 4 receptor (MC4R) results in disrupted satiety signaling, resulting in hyperphagia, hyperinsulinemia, rapid weight gain, and the development of obesity. Clinically, obese hyperinsulinemic MC4R deficient adults demonstrated a partial recovery of GH secretion when compared to healthy body mass index (BMI)-matched individuals. Moreover, as with childhood onset obesity, these adults present with increased adult height. Consequently, defective MC4R signaling is thought to contribute to the recovery of GH release in obesity, and that GH hypersecretion contributes to rapid linear growth in hyperphagic MC4R deficient children. Second to this, it is thought that activation of MC4R contributes to the suppression of GH secretion during weight gain and in obesity. Observations demonstrate a progressive shift in the patterning of GH secretion from puberty throughout early adulthood in mice, reflecting the maturation of the GH axis. This was characterized by the establishment of regular GH secretory events; reminisce of that observed in all adult mammals characterized to date. Relative to pubertal mice at 4 weeks of age, pulsatile GH secretion declined at 8 and 16 weeks of age, correlating with the progressive slowing in the rate of growth velocity. This change in GH secretion did not occur in response to altered somatotropin release inhibitory factor (Srif, the primary inhibitor of GH release) mRNA expression, or changes in Srif mRNA distribution throughout the periventricular /arcuate nucleus (PeVN/ARC) complex of the hypothalamus. When considered alongside published observations, these data suggest that the age-associated changes in pulsatile GH release in mice likely occur in response to a loss of hypothalamic growth hormone releasing hormone (GHRH) neurons and the synchronization of the somatotroph network. Based on limited clinical observations, it was anticipated that rapid pubertal growth associated with MC4R deficiency occurs alongside hypersecretion of GH. However, observations herein confirmed that rapid linear growth in hyperphagic MC4R knockout (MC4RKO) mice occurred in the absence of GH hypersecretion. Rather, MC4RKO mice were GH deficient by 8 weeks of age. Moreover, the progressive decline in GH secretion with age in wild-type (WT) mice was greatly exaggerated in MC4RKO mice, confirming that the eventual slowing of growth rate in these mice did not coincide with the gradual withdrawal of GH release. In addition, circulating or local insulin-like growth factor 1 (IGF-1) remained unchanged throughout rapid linear growth. These observations confirmed that GH/IGF-1 hypersecretion does not account for the rapid linear growth in MC4RKO mice. Consequently, altered GH release in MC4RKO mice declined relative with increased adiposity. As with rats, immunohistochemistry analysis confirmed that the MC4R does not directly contribute to GH release, and thus the loss of MC4R expression does not directly contribute to the recovery of GH release in obesity. Rather, changes in GH release occurred alongside metabolic alterations following hyperphagia-induced weight gain in MC4RKO mice. Interestingly, the suppression of GH release and corresponding rapid linear growth in hyperphagic MC4RKO mice occurred alongside a progressive elevation in circulating levels of insulin. This preceded the development of insulin resistance in adult MC4RKO mice. In humans, the progressive rise in circulating insulin levels during hyperphagia is necessary to sustain circulating nonesterified free fatty acids (NEFAs) and glucose homeostasis, regardless of rapid weight gain and increased adiposity. Moreover, the suppression of GH secretion in response to hyperphagia is thought to maintain insulin-driven NEFAs and glucose clearance relative to calorie intake. To this extent, the suppression of GH release in hyperphagic hyperinsulinemic MC4RKO mice occurred alongside normal circulating NEFA and glucose levels. Consequently, observations in MC4RKO mice reflected metabolic adaptations that sustain NEFAs/glucose homeostasis, similar to that observed in humans. Given that insulin interacts with IGF-1 receptor (IGF-1R) to promote linear growth, it is likely that hyperinsulinemia contribute to sustained rapid pubertal growth in hyperphagic GH-deficient MC4RKO mice. Accordingly, rapid pubertal growth in MC4RKO mice occur secondary to metabolic alterations in response to hyperphagia. To prevent hyperphagia-induced hyperinsulinemia, MC4RKO mice were pair fed (PF) to restrict food intake to that observed in age-matched WT littermates (WT LM). Observations confirmed that the prevention of hyperphagia-associated hyperinsulinemia results in the normalization of rate of linear growth, and a restoration of pulsatile GH secretion in PF MC4RKO mice. Thus, the consequential metabolic responses that occur in response to hyperphagia promote rapid pubertal growth. Of importance, current data infer that metabolic adaptations in response to hyperphagia that are essential to sustain insulin-driven fatty acid and glucose homeostasis likely mimic the effects of GH in promoting pubertal growth. While confirmed in MC4RKO mice, these mechanisms may be conserved in pubertal obese children, accounting for rapid pubertal linear growth in this population. Findings provide valuable insights underlying altered somatic growth in mouse models of pubertal hyperphagia, and set the precedent for future studies that will define mechanisms of growth in the absence of GH/IGF-1, while addressing misconceptions of GH dependent growth in obese hyperinsulinemic MC4R deficient adolescence. e" @default.
- W52057548 created "2016-06-24" @default.
- W52057548 creator A5033585919 @default.
- W52057548 date "2015-01-13" @default.
- W52057548 modified "2023-09-27" @default.
- W52057548 title "Investigating the role of melanocortin system in regulating linear growth and growth hormone secretion" @default.
- W52057548 cites W100460973 @default.
- W52057548 cites W102166461 @default.
- W52057548 cites W1260067689 @default.
- W52057548 cites W1486463812 @default.
- W52057548 cites W1488424161 @default.
- W52057548 cites W1498791370 @default.
- W52057548 cites W1506453366 @default.
- W52057548 cites W1532178599 @default.
- W52057548 cites W1536083272 @default.
- W52057548 cites W1539401343 @default.
- W52057548 cites W1555097928 @default.
- W52057548 cites W1561443084 @default.
- W52057548 cites W1566463829 @default.
- W52057548 cites W1566575087 @default.
- W52057548 cites W1569177428 @default.
- W52057548 cites W1593075597 @default.
- W52057548 cites W1854143160 @default.
- W52057548 cites W1887988335 @default.
- W52057548 cites W1901632217 @default.
- W52057548 cites W1905082515 @default.
- W52057548 cites W1932898120 @default.
- W52057548 cites W1964323435 @default.
- W52057548 cites W1964488668 @default.
- W52057548 cites W1964597676 @default.
- W52057548 cites W1965105130 @default.
- W52057548 cites W1965574341 @default.
- W52057548 cites W1965867713 @default.
- W52057548 cites W1965917719 @default.
- W52057548 cites W1966045283 @default.
- W52057548 cites W1967342769 @default.
- W52057548 cites W1969594608 @default.
- W52057548 cites W1969731808 @default.
- W52057548 cites W1969835310 @default.
- W52057548 cites W1970285990 @default.
- W52057548 cites W1970601814 @default.
- W52057548 cites W1970654981 @default.
- W52057548 cites W1971692114 @default.
- W52057548 cites W1972196825 @default.
- W52057548 cites W1973102414 @default.
- W52057548 cites W1974145315 @default.
- W52057548 cites W1974228571 @default.
- W52057548 cites W1974256272 @default.
- W52057548 cites W1975062397 @default.
- W52057548 cites W1975616560 @default.
- W52057548 cites W1976065642 @default.
- W52057548 cites W1977000145 @default.
- W52057548 cites W1977078866 @default.
- W52057548 cites W1977549443 @default.
- W52057548 cites W1977833491 @default.
- W52057548 cites W1977955708 @default.
- W52057548 cites W1978287190 @default.
- W52057548 cites W1978360188 @default.
- W52057548 cites W1978384766 @default.
- W52057548 cites W1978439674 @default.
- W52057548 cites W1979420492 @default.
- W52057548 cites W1979520291 @default.
- W52057548 cites W1979637368 @default.
- W52057548 cites W1981025527 @default.
- W52057548 cites W1981444898 @default.
- W52057548 cites W1981695760 @default.
- W52057548 cites W1981736657 @default.
- W52057548 cites W1982021537 @default.
- W52057548 cites W1982483611 @default.
- W52057548 cites W1982596569 @default.
- W52057548 cites W1982836278 @default.
- W52057548 cites W1983815567 @default.
- W52057548 cites W1984904683 @default.
- W52057548 cites W1986453779 @default.
- W52057548 cites W1987986705 @default.
- W52057548 cites W1988813242 @default.
- W52057548 cites W1989912928 @default.
- W52057548 cites W1990095603 @default.
- W52057548 cites W1990788363 @default.
- W52057548 cites W1990921171 @default.
- W52057548 cites W1992673544 @default.
- W52057548 cites W1993672117 @default.
- W52057548 cites W1994957236 @default.
- W52057548 cites W1996004317 @default.
- W52057548 cites W1996224452 @default.
- W52057548 cites W1996497022 @default.
- W52057548 cites W1996757852 @default.
- W52057548 cites W1998010040 @default.
- W52057548 cites W1998666012 @default.
- W52057548 cites W1998765593 @default.
- W52057548 cites W1999801514 @default.
- W52057548 cites W1999866365 @default.
- W52057548 cites W2000202544 @default.
- W52057548 cites W2000282740 @default.
- W52057548 cites W2001357786 @default.
- W52057548 cites W2002215523 @default.
- W52057548 cites W2002748611 @default.
- W52057548 cites W2003567005 @default.
- W52057548 cites W2005388253 @default.
- W52057548 cites W2006610316 @default.