Matches in SemOpenAlex for { <https://semopenalex.org/work/W52071268> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W52071268 abstract "This paper deals with the multiple annotation problem in medical application of cancer detection in digital images. The main assumption is that though images are labeled by many experts, the number of images read by the same expert is not large. Thus differing with the existing work on modeling each expert and ground truth simultaneously, the multi annotation information is used in a soft manner. The multiple labels from different experts are used to estimate the probability of the findings to be marked as malignant. The learning algorithm minimizes the Kullback Leibler (KL) divergence between the modeled probabilities and desired ones constraining the model to be compact. The probabilities are modeled by logit regression and multiple instance learning concept is used by us. Experiments on a real-life computer aided diagnosis (CAD) problem for CXR CAD lung cancer detection demonstrate that the proposed algorithm leads to similar results as learning with a binary RVMMIL classifier or a mixture of binary RVMMIL models per annotator. However, this model achieves a smaller complexity and is more preferable in practice." @default.
- W52071268 created "2016-06-24" @default.
- W52071268 creator A5045465500 @default.
- W52071268 creator A5064721182 @default.
- W52071268 creator A5085984939 @default.
- W52071268 date "2014-12-09" @default.
- W52071268 modified "2023-09-27" @default.
- W52071268 title "Cancer Detection with Multiple Radiologists via Soft Multiple Instance Logistic Regression and L 1 Regularization" @default.
- W52071268 cites W1504194272 @default.
- W52071268 cites W2010135967 @default.
- W52071268 cites W2044465660 @default.
- W52071268 cites W2076069245 @default.
- W52071268 cites W2135607475 @default.
- W52071268 cites W2149273804 @default.
- W52071268 cites W2158698691 @default.
- W52071268 cites W2159611280 @default.
- W52071268 cites W2962918692 @default.
- W52071268 hasPublicationYear "2014" @default.
- W52071268 type Work @default.
- W52071268 sameAs 52071268 @default.
- W52071268 citedByCount "1" @default.
- W52071268 countsByYear W520712682018 @default.
- W52071268 crossrefType "posted-content" @default.
- W52071268 hasAuthorship W52071268A5045465500 @default.
- W52071268 hasAuthorship W52071268A5064721182 @default.
- W52071268 hasAuthorship W52071268A5085984939 @default.
- W52071268 hasConcept C119857082 @default.
- W52071268 hasConcept C121608353 @default.
- W52071268 hasConcept C12267149 @default.
- W52071268 hasConcept C124101348 @default.
- W52071268 hasConcept C126322002 @default.
- W52071268 hasConcept C146849305 @default.
- W52071268 hasConcept C151956035 @default.
- W52071268 hasConcept C153180895 @default.
- W52071268 hasConcept C154945302 @default.
- W52071268 hasConcept C2776135515 @default.
- W52071268 hasConcept C2776321320 @default.
- W52071268 hasConcept C2985322473 @default.
- W52071268 hasConcept C41008148 @default.
- W52071268 hasConcept C66905080 @default.
- W52071268 hasConcept C71924100 @default.
- W52071268 hasConcept C95623464 @default.
- W52071268 hasConceptScore W52071268C119857082 @default.
- W52071268 hasConceptScore W52071268C121608353 @default.
- W52071268 hasConceptScore W52071268C12267149 @default.
- W52071268 hasConceptScore W52071268C124101348 @default.
- W52071268 hasConceptScore W52071268C126322002 @default.
- W52071268 hasConceptScore W52071268C146849305 @default.
- W52071268 hasConceptScore W52071268C151956035 @default.
- W52071268 hasConceptScore W52071268C153180895 @default.
- W52071268 hasConceptScore W52071268C154945302 @default.
- W52071268 hasConceptScore W52071268C2776135515 @default.
- W52071268 hasConceptScore W52071268C2776321320 @default.
- W52071268 hasConceptScore W52071268C2985322473 @default.
- W52071268 hasConceptScore W52071268C41008148 @default.
- W52071268 hasConceptScore W52071268C66905080 @default.
- W52071268 hasConceptScore W52071268C71924100 @default.
- W52071268 hasConceptScore W52071268C95623464 @default.
- W52071268 hasLocation W520712681 @default.
- W52071268 hasOpenAccess W52071268 @default.
- W52071268 hasPrimaryLocation W520712681 @default.
- W52071268 hasRelatedWork W154869794 @default.
- W52071268 hasRelatedWork W1919365417 @default.
- W52071268 hasRelatedWork W1964052548 @default.
- W52071268 hasRelatedWork W2014000357 @default.
- W52071268 hasRelatedWork W2064460620 @default.
- W52071268 hasRelatedWork W2216052075 @default.
- W52071268 hasRelatedWork W2527527138 @default.
- W52071268 hasRelatedWork W2735987981 @default.
- W52071268 hasRelatedWork W2747593835 @default.
- W52071268 hasRelatedWork W2766023540 @default.
- W52071268 hasRelatedWork W2775831456 @default.
- W52071268 hasRelatedWork W2784175621 @default.
- W52071268 hasRelatedWork W28749054 @default.
- W52071268 hasRelatedWork W2942018270 @default.
- W52071268 hasRelatedWork W3006251269 @default.
- W52071268 hasRelatedWork W3100707783 @default.
- W52071268 hasRelatedWork W3172621131 @default.
- W52071268 hasRelatedWork W994671503 @default.
- W52071268 hasRelatedWork W2134510694 @default.
- W52071268 hasRelatedWork W2241502702 @default.
- W52071268 isParatext "false" @default.
- W52071268 isRetracted "false" @default.
- W52071268 magId "52071268" @default.
- W52071268 workType "article" @default.