Matches in SemOpenAlex for { <https://semopenalex.org/work/W52662779> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W52662779 abstract "A well-known paradigm for optimisation is the evolutionary algorithm (EA). An EA maintains a population of possible solutions to a problem which converges on a global optimum using biologically-inspired selection and reproduction operators. These algorithms have been shown to perform well on a variety of hard optimisation and search problems. A recent development in evolutionary computation is the Estimation of Distribution Algorithm (EDA) which replaces the traditional genetic reproduction operators (crossover and mutation) with the construction and sampling of a probabilistic model. While this can often represent a significant computational expense, the benefit is that the model contains explicit information about the fitness function. This thesis expands on recent work using a Markov network to model fitness in an EDA, resulting in what we call the Markov Fitness Model (MFM). The work has explored the theoretical foundations of the MFM approach which are grounded in Walsh analysis of fitness functions. This has allowed us to demonstrate a clear relationship between the fitness model and the underlying dynamics of the problem. A key achievement is that we have been able to show how the model can be used to predict fitness and have devised a measure of fitness modelling capability called the fitness prediction correlation (FPC). We have performed a series of experiments which use the FPC to investigate the effect of population size and selection operator on the fitness modelling capability. The results and analysis of these experiments are an important addition to other work on diversity and fitness distribution within populations. With this improved understanding of fitness modelling we have been able to extend the framework Distribution Estimation Using Markov networks (DEUM) to use a multivariate probabilistic model. We have proposed and demonstrated the performance of a number of algorithms based on this framework which lever the MFM for optimisation, which can now be added to the EA toolbox. As part of this we have investigated existing techniques for learning the structure of the MFM; a further contribution which results from this is the introduction of precision and recall as measures of structure quality. We have also proposed a number of possible directions that future work could take." @default.
- W52662779 created "2016-06-24" @default.
- W52662779 creator A5041490004 @default.
- W52662779 date "2009-05-31" @default.
- W52662779 modified "2023-09-24" @default.
- W52662779 title "Multivariate Markov networks for fitness modelling in an estimation of distribution algorithm." @default.
- W52662779 hasPublicationYear "2009" @default.
- W52662779 type Work @default.
- W52662779 sameAs 52662779 @default.
- W52662779 citedByCount "3" @default.
- W52662779 countsByYear W526627792016 @default.
- W52662779 countsByYear W526627792022 @default.
- W52662779 crossrefType "dissertation" @default.
- W52662779 hasAuthorship W52662779A5041490004 @default.
- W52662779 hasConcept C105902424 @default.
- W52662779 hasConcept C119857082 @default.
- W52662779 hasConcept C122507166 @default.
- W52662779 hasConcept C126255220 @default.
- W52662779 hasConcept C144024400 @default.
- W52662779 hasConcept C148392497 @default.
- W52662779 hasConcept C149923435 @default.
- W52662779 hasConcept C154945302 @default.
- W52662779 hasConcept C159149176 @default.
- W52662779 hasConcept C162500139 @default.
- W52662779 hasConcept C176066374 @default.
- W52662779 hasConcept C2908647359 @default.
- W52662779 hasConcept C33923547 @default.
- W52662779 hasConcept C41008148 @default.
- W52662779 hasConcept C81917197 @default.
- W52662779 hasConcept C8880873 @default.
- W52662779 hasConcept C91852762 @default.
- W52662779 hasConcept C98763669 @default.
- W52662779 hasConcept C99701942 @default.
- W52662779 hasConceptScore W52662779C105902424 @default.
- W52662779 hasConceptScore W52662779C119857082 @default.
- W52662779 hasConceptScore W52662779C122507166 @default.
- W52662779 hasConceptScore W52662779C126255220 @default.
- W52662779 hasConceptScore W52662779C144024400 @default.
- W52662779 hasConceptScore W52662779C148392497 @default.
- W52662779 hasConceptScore W52662779C149923435 @default.
- W52662779 hasConceptScore W52662779C154945302 @default.
- W52662779 hasConceptScore W52662779C159149176 @default.
- W52662779 hasConceptScore W52662779C162500139 @default.
- W52662779 hasConceptScore W52662779C176066374 @default.
- W52662779 hasConceptScore W52662779C2908647359 @default.
- W52662779 hasConceptScore W52662779C33923547 @default.
- W52662779 hasConceptScore W52662779C41008148 @default.
- W52662779 hasConceptScore W52662779C81917197 @default.
- W52662779 hasConceptScore W52662779C8880873 @default.
- W52662779 hasConceptScore W52662779C91852762 @default.
- W52662779 hasConceptScore W52662779C98763669 @default.
- W52662779 hasConceptScore W52662779C99701942 @default.
- W52662779 hasLocation W526627791 @default.
- W52662779 hasOpenAccess W52662779 @default.
- W52662779 hasPrimaryLocation W526627791 @default.
- W52662779 hasRelatedWork W1507420740 @default.
- W52662779 hasRelatedWork W1540706608 @default.
- W52662779 hasRelatedWork W1546249523 @default.
- W52662779 hasRelatedWork W1560047216 @default.
- W52662779 hasRelatedWork W1592130821 @default.
- W52662779 hasRelatedWork W1692958259 @default.
- W52662779 hasRelatedWork W183097451 @default.
- W52662779 hasRelatedWork W1972268064 @default.
- W52662779 hasRelatedWork W1978638926 @default.
- W52662779 hasRelatedWork W1985684695 @default.
- W52662779 hasRelatedWork W1992597081 @default.
- W52662779 hasRelatedWork W1994252941 @default.
- W52662779 hasRelatedWork W1995719995 @default.
- W52662779 hasRelatedWork W2082597819 @default.
- W52662779 hasRelatedWork W2084961468 @default.
- W52662779 hasRelatedWork W2090711451 @default.
- W52662779 hasRelatedWork W2102132052 @default.
- W52662779 hasRelatedWork W2414365832 @default.
- W52662779 hasRelatedWork W2489890244 @default.
- W52662779 hasRelatedWork W82518839 @default.
- W52662779 isParatext "false" @default.
- W52662779 isRetracted "false" @default.
- W52662779 magId "52662779" @default.
- W52662779 workType "dissertation" @default.