Matches in SemOpenAlex for { <https://semopenalex.org/work/W53478668> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W53478668 abstract "The recent advances in information and communication technologies (ICT) have resulted in unprecedented growth in available data and information. Consequently, intelligent knowledge creation methods are needed. Organizations need efficient intelligent text mining methods for classification, categorization and summarization of information available at their disposal. Neural Networks have successfully been used in a wide variety of classification problems. The purpose of this dissertation is two-fold. First, applying neural networks in text mining. Second, dramatically reducing the document size by using only the summary (abstract) instead of the whole document without affecting performance. To achieve these goals several research questions had to be answered. For example, how can a document be presented in a format suitable to neural networks? Also, how and how much can a document be reduced in size without losing any valuable content? To answer the research questions posed in this study, 729 research papers were collected as data for the study. Those papers were published in MISQ in the period 1977-2004. Only the abstracts of those papers were used to reduce the document size. Those abstracts were further prepared to be used with neural networks. After identifying the most popular 100 terms in the overall population of documents, each document was represented as 100 numbers. The numbers represent the frequency with which the top 100 terms appear within the given document. A neural network processes those numbers and then classifies the document as belonging or not belonging to a certain category. The classification categories used are the MISQ predefined research categories. A separate neural network was used for each category with a total of nine. This specialization improves performance. Each neural network was trained 50 times and their performance averaged out to counter any inherent randomness in their performance. The results obtained are promising with several factors affecting performance being identified. If such factors are controlled it is possible to very efficiently train neural networks to classify documents using only a summary or an abstract. This results in great savings in computing time and cost. This method could easily be adapted to any other population of documents." @default.
- W53478668 created "2016-06-24" @default.
- W53478668 creator A5007666281 @default.
- W53478668 creator A5009572040 @default.
- W53478668 date "2005-01-01" @default.
- W53478668 modified "2023-09-28" @default.
- W53478668 title "Text mining using neural networks" @default.
- W53478668 hasPublicationYear "2005" @default.
- W53478668 type Work @default.
- W53478668 sameAs 53478668 @default.
- W53478668 citedByCount "0" @default.
- W53478668 crossrefType "journal-article" @default.
- W53478668 hasAuthorship W53478668A5007666281 @default.
- W53478668 hasAuthorship W53478668A5009572040 @default.
- W53478668 hasConcept C124101348 @default.
- W53478668 hasConcept C136197465 @default.
- W53478668 hasConcept C144024400 @default.
- W53478668 hasConcept C149923435 @default.
- W53478668 hasConcept C154945302 @default.
- W53478668 hasConcept C170858558 @default.
- W53478668 hasConcept C23123220 @default.
- W53478668 hasConcept C2522767166 @default.
- W53478668 hasConcept C2780479914 @default.
- W53478668 hasConcept C2908647359 @default.
- W53478668 hasConcept C41008148 @default.
- W53478668 hasConcept C50644808 @default.
- W53478668 hasConcept C94124525 @default.
- W53478668 hasConceptScore W53478668C124101348 @default.
- W53478668 hasConceptScore W53478668C136197465 @default.
- W53478668 hasConceptScore W53478668C144024400 @default.
- W53478668 hasConceptScore W53478668C149923435 @default.
- W53478668 hasConceptScore W53478668C154945302 @default.
- W53478668 hasConceptScore W53478668C170858558 @default.
- W53478668 hasConceptScore W53478668C23123220 @default.
- W53478668 hasConceptScore W53478668C2522767166 @default.
- W53478668 hasConceptScore W53478668C2780479914 @default.
- W53478668 hasConceptScore W53478668C2908647359 @default.
- W53478668 hasConceptScore W53478668C41008148 @default.
- W53478668 hasConceptScore W53478668C50644808 @default.
- W53478668 hasConceptScore W53478668C94124525 @default.
- W53478668 hasLocation W534786681 @default.
- W53478668 hasOpenAccess W53478668 @default.
- W53478668 hasPrimaryLocation W534786681 @default.
- W53478668 hasRelatedWork W1497956894 @default.
- W53478668 hasRelatedWork W1600983471 @default.
- W53478668 hasRelatedWork W1926788437 @default.
- W53478668 hasRelatedWork W2067662470 @default.
- W53478668 hasRelatedWork W2281393958 @default.
- W53478668 hasRelatedWork W2407920565 @default.
- W53478668 hasRelatedWork W2429300731 @default.
- W53478668 hasRelatedWork W2479388309 @default.
- W53478668 hasRelatedWork W2512153119 @default.
- W53478668 hasRelatedWork W2916978035 @default.
- W53478668 hasRelatedWork W2949178332 @default.
- W53478668 hasRelatedWork W2965052554 @default.
- W53478668 hasRelatedWork W2978399804 @default.
- W53478668 hasRelatedWork W3014859188 @default.
- W53478668 hasRelatedWork W3032833041 @default.
- W53478668 hasRelatedWork W3042328599 @default.
- W53478668 hasRelatedWork W3045968601 @default.
- W53478668 hasRelatedWork W3214318190 @default.
- W53478668 hasRelatedWork W948832009 @default.
- W53478668 hasRelatedWork W2553226705 @default.
- W53478668 isParatext "false" @default.
- W53478668 isRetracted "false" @default.
- W53478668 magId "53478668" @default.
- W53478668 workType "article" @default.