Matches in SemOpenAlex for { <https://semopenalex.org/work/W53854514> ?p ?o ?g. }
- W53854514 abstract "Parallel computers are generally either shared-memory machines or distributed- memory machines. There are currently technological limitations on shared-memory architectures and so parallel computers utilizing a large number of processors tend tube distributed-memory machines. We are concerned solely with distributed-memory multiprocessors. In such machines, the dominant factor inhibiting faster global computations is inter-processor communication. Communication is dependent upon the topology of the interconnection network, the routing mechanism, the flow control policy, and the method of switching. We are concerned with issues relating to the topology of the interconnection network. The choice of how we connect processors in a distributed-memory multiprocessor is a fundamental design decision. There are numerous, often conflicting, considerations to bear in mind. However, there does not exist an interconnection network that is optimal on all counts and trade-offs have to be made. A multitude of interconnection networks have been proposed with each of these networks having some good (topological) properties and some not so good. Existing noteworthy networks include trees, fat-trees, meshes, cube-connected cycles, butterflies, Mobius cubes, hypercubes, augmented cubes, k-ary n-cubes, twisted cubes, n-star graphs, (n, k)-star graphs, alternating group graphs, de Bruijn networks, and bubble-sort graphs, to name but a few. We will mainly focus on k-ary n-cubes and (n, k)-star graphs in this thesis. Meanwhile, we propose a new interconnection network called augmented k-ary n- cubes. The following results are given in the thesis.1. Let k ≥ 4 be even and let n ≥ 2. Consider a faulty k-ary n-cube Q(^k_n) in which the number of node faults f(_n) and the number of link faults f(_e) are such that f(_n) + f(_e) ≤ 2n - 2. We prove that given any two healthy nodes s and e of Q(^k_n), there is a path from s to e of length at least k(^n) - 2f(_n) - 1 (resp. k(^n) - 2f(_n) - 2) if the nodes s and e have different (resp. the same) parities (the parity of a node Q(^k_n) in is the sum modulo 2 of the elements in the n-tuple over 0, 1, ∙∙∙ , k - 1 representing the node). Our result is optimal in the sense that there are pairs of nodes and fault configurations for which these bounds cannot be improved, and it answers questions recently posed by Yang, Tan and Hsu, and by Fu. Furthermore, we extend known results, obtained by Kim and Park, for the case when n = 2.2. We give precise solutions to problems posed by Wang, An, Pan, Wang and Qu and by Hsieh, Lin and Huang. In particular, we show that Q(^k_n) is bi-panconnected and edge-bipancyclic, when k ≥ 3 and n ≥ 2, and we also show that when k is odd, Q(^k_n) is m-panconnected, for m = (^n(k - 1) + 2k - 6’ / ‘_2), and (k -1) pancyclic (these bounds are optimal). We introduce a path-shortening technique, called progressive shortening, and strengthen existing results, showing that when paths are formed using progressive shortening then these paths can be efficiently constructed and used to solve a problem relating to the distributed simulation of linear arrays and cycles in a parallel machine whose interconnection network is Q(^k_n) even in the presence of a faulty processor.3. We define an interconnection network AQ(^k_n) which we call the augmented k-ary n-cube by extending a k-ary n-cube in a manner analogous to the existing extension of an n-dimensional hypercube to an n-dimensional augmented cube. We prove that the augmented k-ary n-cube Q(^k_n) has a number of attractive properties (in the context of parallel computing). For example, we show that the augmented k-ary n-cube Q(^k_n) - is a Cayley graph (and so is vertex-symmetric); has connectivity 4n - 2, and is such that we can build a set of 4n - 2 mutually disjoint paths joining any two distinct vertices so that the path of maximal length has length at most max{{n- l)k- (n-2), k + 7}; has diameter [(^k) / (_3)] + [(^k - 1) /( _3)], when n = 2; and has diameter at most (^k) / (_4) (n+ 1), for n ≥ 3 and k even, and at most [(^k)/ (_4) (n + 1) + (^n) / (_4), for n ^, for n ≥ 3 and k odd.4. We present an algorithm which given a source node and a set of n - 1 target nodes in the (n, k)-star graph S(_n,k) where all nodes are distinct, builds a collection of n - 1 node-disjoint paths, one from each target node to the source. The collection of paths output from the algorithm is such that each path has length at most 6k - 7, and the algorithm has time complexity O(k(^3)n(^4))." @default.
- W53854514 created "2016-06-24" @default.
- W53854514 creator A5034348483 @default.
- W53854514 date "2008-01-01" @default.
- W53854514 modified "2023-09-27" @default.
- W53854514 title "Interconnection networks for parallel and distributed computing" @default.
- W53854514 cites W128391828 @default.
- W53854514 cites W1500478216 @default.
- W53854514 cites W1511771744 @default.
- W53854514 cites W1531886005 @default.
- W53854514 cites W1544862944 @default.
- W53854514 cites W1579247759 @default.
- W53854514 cites W1964602554 @default.
- W53854514 cites W1966443575 @default.
- W53854514 cites W1969513456 @default.
- W53854514 cites W1974883413 @default.
- W53854514 cites W1985051597 @default.
- W53854514 cites W1987749257 @default.
- W53854514 cites W1988683687 @default.
- W53854514 cites W1989702447 @default.
- W53854514 cites W1991716724 @default.
- W53854514 cites W1994647606 @default.
- W53854514 cites W1995467644 @default.
- W53854514 cites W2008872160 @default.
- W53854514 cites W2009616880 @default.
- W53854514 cites W2010030599 @default.
- W53854514 cites W2014549738 @default.
- W53854514 cites W2019896606 @default.
- W53854514 cites W2026402293 @default.
- W53854514 cites W2031213890 @default.
- W53854514 cites W2034642511 @default.
- W53854514 cites W2035039556 @default.
- W53854514 cites W2036367133 @default.
- W53854514 cites W2050803875 @default.
- W53854514 cites W2051916444 @default.
- W53854514 cites W2054481961 @default.
- W53854514 cites W2060423228 @default.
- W53854514 cites W2063916905 @default.
- W53854514 cites W2064966517 @default.
- W53854514 cites W2065410746 @default.
- W53854514 cites W2069657003 @default.
- W53854514 cites W2073097708 @default.
- W53854514 cites W2074060643 @default.
- W53854514 cites W2076194071 @default.
- W53854514 cites W2086148955 @default.
- W53854514 cites W2086507055 @default.
- W53854514 cites W2089260993 @default.
- W53854514 cites W2093477316 @default.
- W53854514 cites W2094485236 @default.
- W53854514 cites W2094971017 @default.
- W53854514 cites W2097755092 @default.
- W53854514 cites W2104852618 @default.
- W53854514 cites W2106500842 @default.
- W53854514 cites W2108423441 @default.
- W53854514 cites W2112869003 @default.
- W53854514 cites W2116098768 @default.
- W53854514 cites W2124531928 @default.
- W53854514 cites W2129125806 @default.
- W53854514 cites W2137164589 @default.
- W53854514 cites W2138711634 @default.
- W53854514 cites W2139923218 @default.
- W53854514 cites W2150082598 @default.
- W53854514 cites W2151347250 @default.
- W53854514 cites W2159744829 @default.
- W53854514 cites W2161950066 @default.
- W53854514 cites W2162858941 @default.
- W53854514 cites W2164309468 @default.
- W53854514 cites W2164322846 @default.
- W53854514 cites W2166255004 @default.
- W53854514 cites W2167402676 @default.
- W53854514 cites W2396731247 @default.
- W53854514 cites W3011648644 @default.
- W53854514 cites W42780094 @default.
- W53854514 cites W976211528 @default.
- W53854514 cites W97023931 @default.
- W53854514 hasPublicationYear "2008" @default.
- W53854514 type Work @default.
- W53854514 sameAs 53854514 @default.
- W53854514 citedByCount "4" @default.
- W53854514 countsByYear W538545142012 @default.
- W53854514 countsByYear W538545142014 @default.
- W53854514 crossrefType "dissertation" @default.
- W53854514 hasAuthorship W53854514A5034348483 @default.
- W53854514 hasConcept C111919701 @default.
- W53854514 hasConcept C114614502 @default.
- W53854514 hasConcept C118615104 @default.
- W53854514 hasConcept C120314980 @default.
- W53854514 hasConcept C123745756 @default.
- W53854514 hasConcept C133875982 @default.
- W53854514 hasConcept C170320093 @default.
- W53854514 hasConcept C173608175 @default.
- W53854514 hasConcept C184720557 @default.
- W53854514 hasConcept C2779960059 @default.
- W53854514 hasConcept C31258907 @default.
- W53854514 hasConcept C33923547 @default.
- W53854514 hasConcept C41008148 @default.
- W53854514 hasConcept C4822641 @default.
- W53854514 hasConcept C50820777 @default.
- W53854514 hasConcept C91481028 @default.
- W53854514 hasConceptScore W53854514C111919701 @default.