Matches in SemOpenAlex for { <https://semopenalex.org/work/W53876329> ?p ?o ?g. }
- W53876329 endingPage "70" @default.
- W53876329 startingPage "39" @default.
- W53876329 abstract "We start with an overview of the rings for which every proper ideal is a product of radical ideals, rings introduced by Vaughan and Yeagy under the name of SP-rings. The integral domains with this property are called here domains with radical factorization. We give several characterizations of this type of integral domains by revisiting, completing and generalizing the work by Vaughan–Yeagy (Canad. J. Math. 30:1313–1318, 1978) and Olberding (Arithmetical properties of commutative rings and monoids, Chapman & Hall/CRC, Boca Raton, 2005). In Sect. 3.2, we study almost Dedekind domains having the property that each nonzero finitely generated ideal can be factored as a finite product of powers of ideals of a factoring family (definition given below). In the subsequent section, we provide a review of the Prüfer domains in which the divisorial ideals can be factored as a product of an invertible ideal and pairwise comaximal prime ideals, after papers by Fontana–Popescu (J. Algebra 173:44–66, 1995), Gabelli (Commutative Ring Theory, Marcel Dekker, New York, 1997) and Gabelli–Popescu (J. Pure Appl. Algebra 135:237–251, 1999). The final section is devoted to the presentation of various general constructions due to Loper–Lucas (Comm. Algebra 31:45–59, 2003) for building examples of almost Dedekind (non Dedekind) domains of various kinds (e.g., almost Dedekind domains which do not have radical factorization or which have a factoring family for finitely generated ideals or which have arbitrary sharp or dull degrees (definitions given below))." @default.
- W53876329 created "2016-06-24" @default.
- W53876329 creator A5011853258 @default.
- W53876329 creator A5014298843 @default.
- W53876329 creator A5088518192 @default.
- W53876329 date "2012-01-01" @default.
- W53876329 modified "2023-10-16" @default.
- W53876329 title "Factoring Ideals in Almost Dedekind Domains and Generalized Dedekind Domains" @default.
- W53876329 cites W1499065554 @default.
- W53876329 cites W1784546406 @default.
- W53876329 cites W1989163321 @default.
- W53876329 cites W1989817089 @default.
- W53876329 cites W1996344980 @default.
- W53876329 cites W2000361236 @default.
- W53876329 cites W2001230192 @default.
- W53876329 cites W2004023724 @default.
- W53876329 cites W2005998869 @default.
- W53876329 cites W2012559575 @default.
- W53876329 cites W2013779718 @default.
- W53876329 cites W2014889993 @default.
- W53876329 cites W2014911666 @default.
- W53876329 cites W2015780099 @default.
- W53876329 cites W2017382943 @default.
- W53876329 cites W2023150117 @default.
- W53876329 cites W2026121019 @default.
- W53876329 cites W2026909876 @default.
- W53876329 cites W2028982206 @default.
- W53876329 cites W2029797471 @default.
- W53876329 cites W2032102388 @default.
- W53876329 cites W2032243718 @default.
- W53876329 cites W2034829496 @default.
- W53876329 cites W2038681572 @default.
- W53876329 cites W2044769080 @default.
- W53876329 cites W2046079177 @default.
- W53876329 cites W2046980926 @default.
- W53876329 cites W2051149894 @default.
- W53876329 cites W2052227197 @default.
- W53876329 cites W2057360327 @default.
- W53876329 cites W2059805326 @default.
- W53876329 cites W2068779735 @default.
- W53876329 cites W2069985930 @default.
- W53876329 cites W2071333119 @default.
- W53876329 cites W2073976351 @default.
- W53876329 cites W2076124922 @default.
- W53876329 cites W2087280426 @default.
- W53876329 cites W2090329978 @default.
- W53876329 cites W2093285336 @default.
- W53876329 cites W2094537618 @default.
- W53876329 cites W2095522817 @default.
- W53876329 cites W2154024475 @default.
- W53876329 cites W2256244099 @default.
- W53876329 cites W2316396767 @default.
- W53876329 cites W2320336703 @default.
- W53876329 cites W2322706357 @default.
- W53876329 cites W2476073584 @default.
- W53876329 cites W2944584837 @default.
- W53876329 cites W2945170699 @default.
- W53876329 cites W2962760868 @default.
- W53876329 cites W4206426623 @default.
- W53876329 cites W4210657006 @default.
- W53876329 cites W4210775579 @default.
- W53876329 cites W4212915462 @default.
- W53876329 cites W4213260579 @default.
- W53876329 cites W4231583839 @default.
- W53876329 cites W4241612323 @default.
- W53876329 cites W4248796253 @default.
- W53876329 cites W4379512913 @default.
- W53876329 cites W4379513018 @default.
- W53876329 doi "https://doi.org/10.1007/978-3-642-31712-5_3" @default.
- W53876329 hasPublicationYear "2012" @default.
- W53876329 type Work @default.
- W53876329 sameAs 53876329 @default.
- W53876329 citedByCount "0" @default.
- W53876329 crossrefType "book-chapter" @default.
- W53876329 hasAuthorship W53876329A5011853258 @default.
- W53876329 hasAuthorship W53876329A5014298843 @default.
- W53876329 hasAuthorship W53876329A5088518192 @default.
- W53876329 hasConcept C111472728 @default.
- W53876329 hasConcept C111919701 @default.
- W53876329 hasConcept C11413529 @default.
- W53876329 hasConcept C136119220 @default.
- W53876329 hasConcept C138885662 @default.
- W53876329 hasConcept C161491579 @default.
- W53876329 hasConcept C183778304 @default.
- W53876329 hasConcept C185592164 @default.
- W53876329 hasConcept C187834632 @default.
- W53876329 hasConcept C202444582 @default.
- W53876329 hasConcept C2524010 @default.
- W53876329 hasConcept C2776639384 @default.
- W53876329 hasConcept C2780129039 @default.
- W53876329 hasConcept C33923547 @default.
- W53876329 hasConcept C41008148 @default.
- W53876329 hasConcept C76449584 @default.
- W53876329 hasConcept C90673727 @default.
- W53876329 hasConceptScore W53876329C111472728 @default.
- W53876329 hasConceptScore W53876329C111919701 @default.
- W53876329 hasConceptScore W53876329C11413529 @default.
- W53876329 hasConceptScore W53876329C136119220 @default.