Matches in SemOpenAlex for { <https://semopenalex.org/work/W54149064> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W54149064 abstract "ENUMERATION RESULTS ON LEAF LABELED TREES,Virginia P. Johnson In evolutionary biology, it is common practice to represent the evolution of species, populations, and organisms with graphs, called phylogenetic or species trees. These are rooted leaf-labeled trees where non-root internal vertices have degree at least three and each label is used once. Multi-labeled trees are a generalization of phylogenetic trees that are used in the study of gene versus species evolution and as the basis for phylogenetic network construction. Unlike phylogenetic trees, in a leaf-multi-labeled tree it is possible to label more than one leaf by the same element of the underlying label set. In this thesis we first derive formulae for generating functions of leaf-multi-labeled trees and use these to derive recursions for counting such trees. In particular, we prove results which generalize previous theorems by Harding on so-called tree-shapes, and by Otter on relating the number of rooted and unrooted phylogenetic trees. Turning our attention to phylogenetic or species trees we show the asymtotic normality of categories of phylogenetic trees. P.L. Erdos and L.A. Szekely [Adv. Appl. Math.series 10,1989, 488 – 496] gave a bijection between rooted semilabeled trees and set partitions. L.H. Harper's results [Ann. Math.Stat.series 38, 1967, 410 – 414] on the asymptotic normality of the Stirling numbers of the second kind translates into asymptotic normality of rooted semilabeled trees with given number of vertices, when the number of internal vertices varies. The Erdos-Szekely bijection specializes to a bijection between phylogenetic trees and set partitions with classes of size at least 2. We consider modified Stirling numbers of the second kind that enumerate partitions of a fixed set into a given number of classes of size $geq 2$, and obtain their asymptotic normality as the number of classes varies.The Erdos-Szekely bijection translates this result into the asymptotic normality of the number of phylogenetic trees with given number of vertices, when the number of leaves varies. We also obtain asymptotic normality of the number of phylogenetic trees with given number of leaves and varying number of internal vertices, which make more sense to students of phylogeny. This is accomplished by showing the asymptotic normality of the numberof partitions of $n+m$ elements into $m$ classes of size $geq 2$, when $n$ is fixed and $m$ varies, which with the Erdos-Szekely bijection gives the result we want.The proofs are adaptations of the techniques of L.H. Harper [Ibid.]." @default.
- W54149064 created "2016-06-24" @default.
- W54149064 creator A5047968395 @default.
- W54149064 date "2012-01-01" @default.
- W54149064 modified "2023-09-23" @default.
- W54149064 title "Enumeration Results On Leaf Labeled Trees" @default.
- W54149064 cites W2108717224 @default.
- W54149064 hasPublicationYear "2012" @default.
- W54149064 type Work @default.
- W54149064 sameAs 54149064 @default.
- W54149064 citedByCount "1" @default.
- W54149064 countsByYear W541490642013 @default.
- W54149064 crossrefType "journal-article" @default.
- W54149064 hasAuthorship W54149064A5047968395 @default.
- W54149064 hasConcept C104317684 @default.
- W54149064 hasConcept C113174947 @default.
- W54149064 hasConcept C114614502 @default.
- W54149064 hasConcept C134306372 @default.
- W54149064 hasConcept C156340839 @default.
- W54149064 hasConcept C177148314 @default.
- W54149064 hasConcept C177264268 @default.
- W54149064 hasConcept C193252679 @default.
- W54149064 hasConcept C197855036 @default.
- W54149064 hasConcept C199360897 @default.
- W54149064 hasConcept C24424167 @default.
- W54149064 hasConcept C26619641 @default.
- W54149064 hasConcept C33923547 @default.
- W54149064 hasConcept C41008148 @default.
- W54149064 hasConcept C53208351 @default.
- W54149064 hasConcept C55493867 @default.
- W54149064 hasConcept C57900377 @default.
- W54149064 hasConcept C86803240 @default.
- W54149064 hasConcept C91154448 @default.
- W54149064 hasConceptScore W54149064C104317684 @default.
- W54149064 hasConceptScore W54149064C113174947 @default.
- W54149064 hasConceptScore W54149064C114614502 @default.
- W54149064 hasConceptScore W54149064C134306372 @default.
- W54149064 hasConceptScore W54149064C156340839 @default.
- W54149064 hasConceptScore W54149064C177148314 @default.
- W54149064 hasConceptScore W54149064C177264268 @default.
- W54149064 hasConceptScore W54149064C193252679 @default.
- W54149064 hasConceptScore W54149064C197855036 @default.
- W54149064 hasConceptScore W54149064C199360897 @default.
- W54149064 hasConceptScore W54149064C24424167 @default.
- W54149064 hasConceptScore W54149064C26619641 @default.
- W54149064 hasConceptScore W54149064C33923547 @default.
- W54149064 hasConceptScore W54149064C41008148 @default.
- W54149064 hasConceptScore W54149064C53208351 @default.
- W54149064 hasConceptScore W54149064C55493867 @default.
- W54149064 hasConceptScore W54149064C57900377 @default.
- W54149064 hasConceptScore W54149064C86803240 @default.
- W54149064 hasConceptScore W54149064C91154448 @default.
- W54149064 hasLocation W541490641 @default.
- W54149064 hasOpenAccess W54149064 @default.
- W54149064 hasPrimaryLocation W541490641 @default.
- W54149064 hasRelatedWork W1546829463 @default.
- W54149064 hasRelatedWork W1980528081 @default.
- W54149064 hasRelatedWork W1990904330 @default.
- W54149064 hasRelatedWork W2075260586 @default.
- W54149064 hasRelatedWork W2096775741 @default.
- W54149064 hasRelatedWork W2138659323 @default.
- W54149064 hasRelatedWork W2184313932 @default.
- W54149064 hasRelatedWork W2573312034 @default.
- W54149064 hasRelatedWork W2754310603 @default.
- W54149064 hasRelatedWork W2774413691 @default.
- W54149064 hasRelatedWork W2809600437 @default.
- W54149064 hasRelatedWork W2914983679 @default.
- W54149064 hasRelatedWork W2923291801 @default.
- W54149064 hasRelatedWork W2963958686 @default.
- W54149064 hasRelatedWork W3007971299 @default.
- W54149064 hasRelatedWork W3023911573 @default.
- W54149064 hasRelatedWork W3032777455 @default.
- W54149064 hasRelatedWork W3042414389 @default.
- W54149064 hasRelatedWork W3130698525 @default.
- W54149064 hasRelatedWork W3163691089 @default.
- W54149064 isParatext "false" @default.
- W54149064 isRetracted "false" @default.
- W54149064 magId "54149064" @default.
- W54149064 workType "article" @default.