Matches in SemOpenAlex for { <https://semopenalex.org/work/W54295067> ?p ?o ?g. }
- W54295067 endingPage "1291" @default.
- W54295067 startingPage "1286" @default.
- W54295067 abstract "Sentiment analysis is the task of determining the attitude (positive or negative) of documents. While the polarity of words in the documents is informative for this task, polarity of some words cannot be determined without domain knowledge. Detecting word polarity thus poses a challenge for multiple-domain sentiment analysis. Previous approaches tackle this problem with transfer learning techniques, but they cannot handle multiple source domains and multiple target domains. This paper proposes a novel Bayesian probabilistic model to handle multiple source and multiple target domains. In this model, each word is associated with three factors: Domain label, domain dependence/independence and word polarity. We derive an efficient algorithm using Gibbs sampling for inferring the parameters of the model, from both labeled and unlabeled texts. Using real data, we demonstrate the effectiveness of our model in a document polarity classification task compared with a method not considering the differences between domains. Moreover our method can also tell whether each word's polarity is domain-dependent or domain-independent. This feature allows us to construct a word polarity dictionary for each domain." @default.
- W54295067 created "2016-06-24" @default.
- W54295067 creator A5034538103 @default.
- W54295067 creator A5035622559 @default.
- W54295067 creator A5050535638 @default.
- W54295067 creator A5057313515 @default.
- W54295067 creator A5072032804 @default.
- W54295067 date "2011-08-04" @default.
- W54295067 modified "2023-09-26" @default.
- W54295067 title "Transfer Learning for Multiple-Domain Sentiment Analysis — Identifying Domain Dependent/Independent Word Polarity" @default.
- W54295067 cites W143867266 @default.
- W54295067 cites W1741372064 @default.
- W54295067 cites W18127387 @default.
- W54295067 cites W1880262756 @default.
- W54295067 cites W190008395 @default.
- W54295067 cites W2001082470 @default.
- W54295067 cites W2096110600 @default.
- W54295067 cites W2097089247 @default.
- W54295067 cites W2113786470 @default.
- W54295067 cites W2119188197 @default.
- W54295067 cites W2120708938 @default.
- W54295067 cites W2129294185 @default.
- W54295067 cites W2129604374 @default.
- W54295067 cites W2130903752 @default.
- W54295067 cites W2141790691 @default.
- W54295067 cites W2158108973 @default.
- W54295067 cites W2163302275 @default.
- W54295067 cites W2165698076 @default.
- W54295067 cites W2166706824 @default.
- W54295067 doi "https://doi.org/10.1609/aaai.v25i1.8081" @default.
- W54295067 hasPublicationYear "2011" @default.
- W54295067 type Work @default.
- W54295067 sameAs 54295067 @default.
- W54295067 citedByCount "78" @default.
- W54295067 countsByYear W542950672012 @default.
- W54295067 countsByYear W542950672013 @default.
- W54295067 countsByYear W542950672014 @default.
- W54295067 countsByYear W542950672015 @default.
- W54295067 countsByYear W542950672016 @default.
- W54295067 countsByYear W542950672017 @default.
- W54295067 countsByYear W542950672018 @default.
- W54295067 countsByYear W542950672019 @default.
- W54295067 countsByYear W542950672020 @default.
- W54295067 countsByYear W542950672021 @default.
- W54295067 countsByYear W542950672022 @default.
- W54295067 countsByYear W542950672023 @default.
- W54295067 crossrefType "journal-article" @default.
- W54295067 hasAuthorship W54295067A5034538103 @default.
- W54295067 hasAuthorship W54295067A5035622559 @default.
- W54295067 hasAuthorship W54295067A5050535638 @default.
- W54295067 hasAuthorship W54295067A5057313515 @default.
- W54295067 hasAuthorship W54295067A5072032804 @default.
- W54295067 hasBestOaLocation W542950671 @default.
- W54295067 hasConcept C105795698 @default.
- W54295067 hasConcept C119857082 @default.
- W54295067 hasConcept C134306372 @default.
- W54295067 hasConcept C138885662 @default.
- W54295067 hasConcept C1491633281 @default.
- W54295067 hasConcept C153180895 @default.
- W54295067 hasConcept C154945302 @default.
- W54295067 hasConcept C162324750 @default.
- W54295067 hasConcept C185592680 @default.
- W54295067 hasConcept C187736073 @default.
- W54295067 hasConcept C204321447 @default.
- W54295067 hasConcept C2524010 @default.
- W54295067 hasConcept C2776401178 @default.
- W54295067 hasConcept C2777361361 @default.
- W54295067 hasConcept C2780451532 @default.
- W54295067 hasConcept C33923547 @default.
- W54295067 hasConcept C35651441 @default.
- W54295067 hasConcept C36503486 @default.
- W54295067 hasConcept C41008148 @default.
- W54295067 hasConcept C41895202 @default.
- W54295067 hasConcept C49937458 @default.
- W54295067 hasConcept C55493867 @default.
- W54295067 hasConcept C66402592 @default.
- W54295067 hasConcept C90805587 @default.
- W54295067 hasConceptScore W54295067C105795698 @default.
- W54295067 hasConceptScore W54295067C119857082 @default.
- W54295067 hasConceptScore W54295067C134306372 @default.
- W54295067 hasConceptScore W54295067C138885662 @default.
- W54295067 hasConceptScore W54295067C1491633281 @default.
- W54295067 hasConceptScore W54295067C153180895 @default.
- W54295067 hasConceptScore W54295067C154945302 @default.
- W54295067 hasConceptScore W54295067C162324750 @default.
- W54295067 hasConceptScore W54295067C185592680 @default.
- W54295067 hasConceptScore W54295067C187736073 @default.
- W54295067 hasConceptScore W54295067C204321447 @default.
- W54295067 hasConceptScore W54295067C2524010 @default.
- W54295067 hasConceptScore W54295067C2776401178 @default.
- W54295067 hasConceptScore W54295067C2777361361 @default.
- W54295067 hasConceptScore W54295067C2780451532 @default.
- W54295067 hasConceptScore W54295067C33923547 @default.
- W54295067 hasConceptScore W54295067C35651441 @default.
- W54295067 hasConceptScore W54295067C36503486 @default.
- W54295067 hasConceptScore W54295067C41008148 @default.
- W54295067 hasConceptScore W54295067C41895202 @default.
- W54295067 hasConceptScore W54295067C49937458 @default.