Matches in SemOpenAlex for { <https://semopenalex.org/work/W54858356> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W54858356 abstract "The objective of this study was to investigate the effects of circularity, comorbidity, prevalence and presentation variation on the accuracy of differential diagnoses made in optometric primary care using a modified form of naive Bayesian sequential analysis. No such investigation has ever been reported before. Data were collected for 1422 cases seen over one year. Positive test outcomes were recorded for case history (ethnicity, age, symptoms and ocular and medical history) and clinical signs in relation to each diagnosis. For this reason only positive likelihood ratios were used for this modified form of Bayesian analysis that was carried out with Laplacian correction and Chi-square filtration. Accuracy was expressed as the percentage of cases for which the diagnoses made by the clinician appeared at the top of a list generated by Bayesian analysis. Preliminary analyses were carried out on 10 diagnoses and 15 test outcomes. Accuracy of 100% was achieved in the absence of presentation variation but dropped by 6% when variation existed. Circularity artificially elevated accuracy by 0.5%. Surprisingly, removal of Chi-square filtering increased accuracy by 0.4%. Decision tree analysis showed that accuracy was influenced primarily by prevalence followed by presentation variation and comorbidity. Analysis of 35 diagnoses and 105 test outcomes followed. This explored the use of positive likelihood ratios, derived from the case history, to recommend signs to look for. Accuracy of 72% was achieved when all clinical signs were entered. The drop in accuracy, compared to the preliminary analysis, was attributed to the fact that some diagnoses lacked strong diagnostic signs; the accuracy increased by 1% when only recommended signs were entered. Chi-square filtering improved recommended test selection. Decision tree analysis showed that accuracy again influenced primarily by prevalence, followed by comorbidity and presentation variation. Future work will explore the use of likelihood ratios based on positive and negative test findings prior to considering naive Bayesian analysis as a form of artificial intelligence in optometric practice." @default.
- W54858356 created "2016-06-24" @default.
- W54858356 creator A5028025357 @default.
- W54858356 date "2014-10-06" @default.
- W54858356 modified "2023-09-27" @default.
- W54858356 title "Application of Naïve Bayesian sequential analysis to primary care optometry" @default.
- W54858356 hasPublicationYear "2014" @default.
- W54858356 type Work @default.
- W54858356 sameAs 54858356 @default.
- W54858356 citedByCount "1" @default.
- W54858356 countsByYear W548583562017 @default.
- W54858356 crossrefType "dissertation" @default.
- W54858356 hasAuthorship W54858356A5028025357 @default.
- W54858356 hasConcept C105795698 @default.
- W54858356 hasConcept C107673813 @default.
- W54858356 hasConcept C126322002 @default.
- W54858356 hasConcept C141071460 @default.
- W54858356 hasConcept C142724271 @default.
- W54858356 hasConcept C144024400 @default.
- W54858356 hasConcept C149923435 @default.
- W54858356 hasConcept C151730666 @default.
- W54858356 hasConcept C206179267 @default.
- W54858356 hasConcept C2777267654 @default.
- W54858356 hasConcept C2779159551 @default.
- W54858356 hasConcept C2984752397 @default.
- W54858356 hasConcept C33923547 @default.
- W54858356 hasConcept C512399662 @default.
- W54858356 hasConcept C534262118 @default.
- W54858356 hasConcept C71924100 @default.
- W54858356 hasConcept C86803240 @default.
- W54858356 hasConceptScore W54858356C105795698 @default.
- W54858356 hasConceptScore W54858356C107673813 @default.
- W54858356 hasConceptScore W54858356C126322002 @default.
- W54858356 hasConceptScore W54858356C141071460 @default.
- W54858356 hasConceptScore W54858356C142724271 @default.
- W54858356 hasConceptScore W54858356C144024400 @default.
- W54858356 hasConceptScore W54858356C149923435 @default.
- W54858356 hasConceptScore W54858356C151730666 @default.
- W54858356 hasConceptScore W54858356C206179267 @default.
- W54858356 hasConceptScore W54858356C2777267654 @default.
- W54858356 hasConceptScore W54858356C2779159551 @default.
- W54858356 hasConceptScore W54858356C2984752397 @default.
- W54858356 hasConceptScore W54858356C33923547 @default.
- W54858356 hasConceptScore W54858356C512399662 @default.
- W54858356 hasConceptScore W54858356C534262118 @default.
- W54858356 hasConceptScore W54858356C71924100 @default.
- W54858356 hasConceptScore W54858356C86803240 @default.
- W54858356 hasLocation W548583561 @default.
- W54858356 hasOpenAccess W54858356 @default.
- W54858356 hasPrimaryLocation W548583561 @default.
- W54858356 hasRelatedWork W119841261 @default.
- W54858356 hasRelatedWork W1488048044 @default.
- W54858356 hasRelatedWork W1589187366 @default.
- W54858356 hasRelatedWork W2004018978 @default.
- W54858356 hasRelatedWork W2014604849 @default.
- W54858356 hasRelatedWork W2014685818 @default.
- W54858356 hasRelatedWork W2033950332 @default.
- W54858356 hasRelatedWork W2042934762 @default.
- W54858356 hasRelatedWork W2076857458 @default.
- W54858356 hasRelatedWork W2131671659 @default.
- W54858356 hasRelatedWork W2141913292 @default.
- W54858356 hasRelatedWork W2410425493 @default.
- W54858356 hasRelatedWork W2418782220 @default.
- W54858356 hasRelatedWork W2612305131 @default.
- W54858356 hasRelatedWork W2793744238 @default.
- W54858356 hasRelatedWork W2982266491 @default.
- W54858356 hasRelatedWork W3209739528 @default.
- W54858356 hasRelatedWork W67739554 @default.
- W54858356 hasRelatedWork W2124030794 @default.
- W54858356 hasRelatedWork W2187118069 @default.
- W54858356 isParatext "false" @default.
- W54858356 isRetracted "false" @default.
- W54858356 magId "54858356" @default.
- W54858356 workType "dissertation" @default.