Matches in SemOpenAlex for { <https://semopenalex.org/work/W55474489> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W55474489 endingPage "20" @default.
- W55474489 startingPage "19" @default.
- W55474489 abstract "This thesis examines a question of stability in stochastic and deterministic systems with memory, and involves studying the asymptotic properties of Volterra integro-differential equations. The type of stability that has been established for this class of equations is important in a variety of real-world problems which involve feedback from the past, and are subject to external random forces. These include modelling endemic diseases, and more particularly the modelling of inefficient financial markets.The theine of the thesis is to subject a dynamical system with memory to increasingly trong and unpredictable external noise. Firstly, a fundamental deterministic Volterra quation is considered. Necessary and sufficient conditions for the solution to approach nontrivial limit are known. A strengthened version of these conditions is shown to be necessary and sufficient for exponential convergence to a nontrivial limit.Next, a Volterra equation with a fading stochastic perturbation is studied. Two types f stochastic convergence are considered: mean square and almost sure convergence. Conditions re found which ensure that the solution converges to a non-equilibrium random imit. Moreover, the rate at which this limit is approached is established. In the mean quare case, necessary and sufficient conditions on the resolvent, kernel and noise are determined o ensure this rate of convergence. In the almost sure case, the same conditions re found to be sufficient; furthermore, it is shown that the conditions on the resolvent and he kernel are necessary. A correspoilding result was also found to hold for a more general lass of weakly singular kernels. As in the deterministic case, necessary and sufficient onditions for the solution to converge exponentially fast to its limit are found.Finally, a stochastic Volterra equation with constant noise intensity is considered. This ives rise to the process analogous to Brownian motion, which has applications to mathematical inance. It can be shown that the increments of the process converge to a stationary tatistical distribution, which is Gaussian distributed. The conditions under which uch convergence can take place are completely characterised. In fact, a solution of a orresponding Volterra equation with infinite memory is shown to have exactly stationary ncrements which match the limiting distributions of the increments of solutions." @default.
- W55474489 created "2016-06-24" @default.
- W55474489 creator A5038092286 @default.
- W55474489 date "2007-01-01" @default.
- W55474489 modified "2023-09-27" @default.
- W55474489 title "On the Asymptotic Behaviour of Deterministic and Stochastic Volterra Integro--Differential Equations" @default.
- W55474489 doi "https://doi.org/10.33232/bims.0060.19.20" @default.
- W55474489 hasPublicationYear "2007" @default.
- W55474489 type Work @default.
- W55474489 sameAs 55474489 @default.
- W55474489 citedByCount "0" @default.
- W55474489 crossrefType "journal-article" @default.
- W55474489 hasAuthorship W55474489A5038092286 @default.
- W55474489 hasBestOaLocation W554744891 @default.
- W55474489 hasConcept C121332964 @default.
- W55474489 hasConcept C134306372 @default.
- W55474489 hasConcept C158622935 @default.
- W55474489 hasConcept C21965488 @default.
- W55474489 hasConcept C27016315 @default.
- W55474489 hasConcept C28826006 @default.
- W55474489 hasConcept C2983756050 @default.
- W55474489 hasConcept C33923547 @default.
- W55474489 hasConcept C51955184 @default.
- W55474489 hasConcept C62520636 @default.
- W55474489 hasConcept C64057670 @default.
- W55474489 hasConcept C70985411 @default.
- W55474489 hasConcept C78045399 @default.
- W55474489 hasConcept C93226319 @default.
- W55474489 hasConcept C97355855 @default.
- W55474489 hasConceptScore W55474489C121332964 @default.
- W55474489 hasConceptScore W55474489C134306372 @default.
- W55474489 hasConceptScore W55474489C158622935 @default.
- W55474489 hasConceptScore W55474489C21965488 @default.
- W55474489 hasConceptScore W55474489C27016315 @default.
- W55474489 hasConceptScore W55474489C28826006 @default.
- W55474489 hasConceptScore W55474489C2983756050 @default.
- W55474489 hasConceptScore W55474489C33923547 @default.
- W55474489 hasConceptScore W55474489C51955184 @default.
- W55474489 hasConceptScore W55474489C62520636 @default.
- W55474489 hasConceptScore W55474489C64057670 @default.
- W55474489 hasConceptScore W55474489C70985411 @default.
- W55474489 hasConceptScore W55474489C78045399 @default.
- W55474489 hasConceptScore W55474489C93226319 @default.
- W55474489 hasConceptScore W55474489C97355855 @default.
- W55474489 hasLocation W554744891 @default.
- W55474489 hasLocation W554744892 @default.
- W55474489 hasOpenAccess W55474489 @default.
- W55474489 hasPrimaryLocation W554744891 @default.
- W55474489 hasRelatedWork W2009654271 @default.
- W55474489 hasRelatedWork W2122130369 @default.
- W55474489 hasRelatedWork W2509076983 @default.
- W55474489 hasRelatedWork W2791392012 @default.
- W55474489 hasRelatedWork W2906624979 @default.
- W55474489 hasRelatedWork W2949335444 @default.
- W55474489 hasRelatedWork W3030783753 @default.
- W55474489 hasRelatedWork W3097583914 @default.
- W55474489 hasRelatedWork W3200459157 @default.
- W55474489 hasRelatedWork W4241063720 @default.
- W55474489 hasVolume "0060" @default.
- W55474489 isParatext "false" @default.
- W55474489 isRetracted "false" @default.
- W55474489 magId "55474489" @default.
- W55474489 workType "article" @default.