Matches in SemOpenAlex for { <https://semopenalex.org/work/W5564477> ?p ?o ?g. }
- W5564477 abstract "Double sampling for stratification is an efficient sampling scheme that could prove its practicability in different forest inventories. Nevertheless, further increases of efficiency are desired. Several approaches for achieving this aim are presented and discussed separately in this thesis. The approaches are tested in case studies with data from the Forest District Inventory of Lower Saxony. The first approach (chapter 2) deals with double sampling for stratification in repeated inventories. A Composite Estimator is constructed with data from the current inventory occasion and simulation results of the preceding occasion. Therein the sample size of the current inventory can be reduced, whereas the full number of sample plots of the previous occasion is used for simulations. Even though such an estimator can be constructed, the case study indicates that no, or at least no sufficient, increase of efficiency can be achieved. This can be explained by the big differences between the results of the reduced, current terrestrial inventory and the predicted volumes of the simulations. An increase of the efficiency of this approach can only become possible through further developments of forest growth models. With a three-phase sampling design, that combines double sampling for stratification and double sampling for regression, a higher efficiency can, however, be achieved for applications in repeated inventories (chapter 3). Estimators for the mean and the variance are presented that are based on the so-called infinite population approach in the first phase. The correlations between current inventory data and growth-simulations on the basis of the previous inventory are used in this approach. Instead of the simulations, the data of the previous inventory can simply be used directly for calculating the correlations. However, using the simulations as regressors mostly leads to better results. The efficiency of the presented three-phase design is higher than the one of the classical two-phase design if the sample size of the second inventory occasion is reduced and a decrease in precision is accepted. Thus, the use of the data from a previous inventory occasion in terms of a strata-wise regression estimator could be shown to be successful and superior to the Composite Estimator. Another presented method is the expansion of the double sampling for stratification design by clustered sub-sampling to a three-phase design (chapter 4). For the Ratio-to-Size approach as well as for the unbiased approach estimators for the mean and the variance are given. Compared to pure double sampling for stratification, using this three-phase design cannot increase the efficiency in the corresponding case study. Reasons for this might be seen in the small spatial extent of the forest districts and the high sampling density in there. Meaningful applications of this procedure are possibly thinkable in large areas with bad infrastructure. In a further case study, it is aimed to cluster existing sample points into clusters of homogenous size (chapter 5). This clustering shall help to optimise the travel time for the inventory of sampling points. Therefore, seven different methods are tested and their results are compared. Moreover, the quality of the solutions is evaluated through a comparison with optimised benchmark-solutions. It becomes obvious that three algorithms of the Vehicle Routing Problem are well suited for generating such clusters of homogenous size. Three clustering-algorithms as well as using planning units as clusters do not produce clusters of very homogenous size, and can thus not be recommended." @default.
- W5564477 created "2016-06-24" @default.
- W5564477 creator A5005539172 @default.
- W5564477 date "2022-02-20" @default.
- W5564477 modified "2023-09-30" @default.
- W5564477 title "Approaches for the optimisation of double sampling for stratification in repeated forest inventories" @default.
- W5564477 cites W101567379 @default.
- W5564477 cites W1156234926 @default.
- W5564477 cites W1272693108 @default.
- W5564477 cites W1484712862 @default.
- W5564477 cites W1495669114 @default.
- W5564477 cites W1828286711 @default.
- W5564477 cites W1958668230 @default.
- W5564477 cites W1968686257 @default.
- W5564477 cites W1974101171 @default.
- W5564477 cites W1977185416 @default.
- W5564477 cites W1977556410 @default.
- W5564477 cites W1978186990 @default.
- W5564477 cites W1980296372 @default.
- W5564477 cites W1986749561 @default.
- W5564477 cites W1994940434 @default.
- W5564477 cites W1997732436 @default.
- W5564477 cites W2006644210 @default.
- W5564477 cites W2011969033 @default.
- W5564477 cites W2016381774 @default.
- W5564477 cites W2024060531 @default.
- W5564477 cites W2025391876 @default.
- W5564477 cites W2029685080 @default.
- W5564477 cites W2030910540 @default.
- W5564477 cites W2032562260 @default.
- W5564477 cites W2035998077 @default.
- W5564477 cites W2053898741 @default.
- W5564477 cites W2056760934 @default.
- W5564477 cites W2058655705 @default.
- W5564477 cites W2062918385 @default.
- W5564477 cites W2104403915 @default.
- W5564477 cites W2108891443 @default.
- W5564477 cites W2111563176 @default.
- W5564477 cites W2111581650 @default.
- W5564477 cites W2118587067 @default.
- W5564477 cites W2125045620 @default.
- W5564477 cites W2127218421 @default.
- W5564477 cites W2137507954 @default.
- W5564477 cites W2150593711 @default.
- W5564477 cites W2168210873 @default.
- W5564477 cites W2171060218 @default.
- W5564477 cites W2245022775 @default.
- W5564477 cites W2300870651 @default.
- W5564477 cites W2582743722 @default.
- W5564477 cites W27483885 @default.
- W5564477 cites W2889784734 @default.
- W5564477 cites W2913066018 @default.
- W5564477 cites W2936858778 @default.
- W5564477 cites W3023036023 @default.
- W5564477 cites W3125510483 @default.
- W5564477 cites W3197295219 @default.
- W5564477 cites W42588085 @default.
- W5564477 cites W643769934 @default.
- W5564477 cites W90618920 @default.
- W5564477 cites W2478103997 @default.
- W5564477 doi "https://doi.org/10.53846/goediss-3884" @default.
- W5564477 hasPublicationYear "2022" @default.
- W5564477 type Work @default.
- W5564477 sameAs 5564477 @default.
- W5564477 citedByCount "0" @default.
- W5564477 crossrefType "dissertation" @default.
- W5564477 hasAuthorship W5564477A5005539172 @default.
- W5564477 hasBestOaLocation W55644771 @default.
- W5564477 hasConcept C100701293 @default.
- W5564477 hasConcept C105795698 @default.
- W5564477 hasConcept C106131492 @default.
- W5564477 hasConcept C121955636 @default.
- W5564477 hasConcept C140779682 @default.
- W5564477 hasConcept C144024400 @default.
- W5564477 hasConcept C147103442 @default.
- W5564477 hasConcept C149782125 @default.
- W5564477 hasConcept C149923435 @default.
- W5564477 hasConcept C162324750 @default.
- W5564477 hasConcept C185429906 @default.
- W5564477 hasConcept C185592680 @default.
- W5564477 hasConcept C192489979 @default.
- W5564477 hasConcept C192943249 @default.
- W5564477 hasConcept C196083921 @default.
- W5564477 hasConcept C198531522 @default.
- W5564477 hasConcept C20353970 @default.
- W5564477 hasConcept C205649164 @default.
- W5564477 hasConcept C28631016 @default.
- W5564477 hasConcept C2908647359 @default.
- W5564477 hasConcept C31972630 @default.
- W5564477 hasConcept C33923547 @default.
- W5564477 hasConcept C3527866 @default.
- W5564477 hasConcept C41008148 @default.
- W5564477 hasConcept C43617362 @default.
- W5564477 hasConcept C49898467 @default.
- W5564477 hasConcept C59822182 @default.
- W5564477 hasConcept C75373757 @default.
- W5564477 hasConcept C86803240 @default.
- W5564477 hasConcept C88548481 @default.
- W5564477 hasConcept C97137747 @default.
- W5564477 hasConceptScore W5564477C100701293 @default.