Matches in SemOpenAlex for { <https://semopenalex.org/work/W562802392> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W562802392 endingPage "131" @default.
- W562802392 startingPage "109" @default.
- W562802392 abstract "grammar nonlinear regression generalized linear models (GLM) basis function maximum binary tree Regression Query Language (RQL) island elitist constraint extreme accuracy stepwise regression heuristic ridge regression polynomial As Korns Michael F. symbolic regression (SR) has advanced into the early stages of commercial exploitation, the poor accuracy of SR, still plaguing even the most advanced commercial packages, has become an issue for early adopters. Users expect to have the correct formula returned, especially in cases with zero noise and only one basis function with minimally complex grammar depth. At a minimum, users expect the response surface of the SR tool to be easily understood, so that the user can know apriori on what classes of problems to expect excellent, average, or poor accuracy. Poor or unknown accuracy is a hinderence to greater academic and industrial acceptance of SR tools. In a previous paper, we published a complex algorithm for modern symbolic regression which is extremely accurate for a large class of Symbolic Regression problems. The class of problems, on which SR is extremely accurate, was described in detail. This algorithm was extremely accurate, on a single processor, for up to 25 features (columns); and, a cloud configuration was used to extend the extreme accuracy up to as many as 100 features. While the previous algorithm’s extreme accuracy for deep problems with a small number of features (25–100) was an impressive advance, there are many very important academic and industrial SR problems requiring from 100 to 1000 features. In this chapter we extend the previous algorithm such that high accuracy is achieved on a wide range of problems, from 25 to 3000 features, using only a single processor. The class of problems, on which the enhanced algorithm is highly accurate, is described in detail. A definition of extreme accuracy is provided, and an informal argument of highly SR accuracy is outlined in this chapter. The new enhanced algorithm is tested on a set of representative problems. The enhanced algorithm is shown to be robust, performing well even in the face of testing data containing up to 3000 features." @default.
- W562802392 created "2016-06-24" @default.
- W562802392 creator A5055503046 @default.
- W562802392 date "2015-01-01" @default.
- W562802392 modified "2023-10-16" @default.
- W562802392 title "Extremely Accurate Symbolic Regression for Large Feature Problems" @default.
- W562802392 cites W112222302 @default.
- W562802392 cites W121066256 @default.
- W562802392 cites W178471156 @default.
- W562802392 cites W199024138 @default.
- W562802392 cites W2199551460 @default.
- W562802392 cites W2801490189 @default.
- W562802392 cites W5949222 @default.
- W562802392 doi "https://doi.org/10.1007/978-3-319-16030-6_7" @default.
- W562802392 hasPublicationYear "2015" @default.
- W562802392 type Work @default.
- W562802392 sameAs 562802392 @default.
- W562802392 citedByCount "9" @default.
- W562802392 countsByYear W5628023922015 @default.
- W562802392 countsByYear W5628023922016 @default.
- W562802392 countsByYear W5628023922017 @default.
- W562802392 countsByYear W5628023922019 @default.
- W562802392 countsByYear W5628023922020 @default.
- W562802392 countsByYear W5628023922022 @default.
- W562802392 countsByYear W5628023922023 @default.
- W562802392 crossrefType "book-chapter" @default.
- W562802392 hasAuthorship W562802392A5055503046 @default.
- W562802392 hasConcept C105795698 @default.
- W562802392 hasConcept C110332635 @default.
- W562802392 hasConcept C11413529 @default.
- W562802392 hasConcept C119857082 @default.
- W562802392 hasConcept C120068334 @default.
- W562802392 hasConcept C138885662 @default.
- W562802392 hasConcept C152877465 @default.
- W562802392 hasConcept C154945302 @default.
- W562802392 hasConcept C173801870 @default.
- W562802392 hasConcept C2776400721 @default.
- W562802392 hasConcept C2776401178 @default.
- W562802392 hasConcept C33923547 @default.
- W562802392 hasConcept C41008148 @default.
- W562802392 hasConcept C41895202 @default.
- W562802392 hasConcept C44882253 @default.
- W562802392 hasConcept C83546350 @default.
- W562802392 hasConceptScore W562802392C105795698 @default.
- W562802392 hasConceptScore W562802392C110332635 @default.
- W562802392 hasConceptScore W562802392C11413529 @default.
- W562802392 hasConceptScore W562802392C119857082 @default.
- W562802392 hasConceptScore W562802392C120068334 @default.
- W562802392 hasConceptScore W562802392C138885662 @default.
- W562802392 hasConceptScore W562802392C152877465 @default.
- W562802392 hasConceptScore W562802392C154945302 @default.
- W562802392 hasConceptScore W562802392C173801870 @default.
- W562802392 hasConceptScore W562802392C2776400721 @default.
- W562802392 hasConceptScore W562802392C2776401178 @default.
- W562802392 hasConceptScore W562802392C33923547 @default.
- W562802392 hasConceptScore W562802392C41008148 @default.
- W562802392 hasConceptScore W562802392C41895202 @default.
- W562802392 hasConceptScore W562802392C44882253 @default.
- W562802392 hasConceptScore W562802392C83546350 @default.
- W562802392 hasLocation W5628023921 @default.
- W562802392 hasOpenAccess W562802392 @default.
- W562802392 hasPrimaryLocation W5628023921 @default.
- W562802392 hasRelatedWork W1685088304 @default.
- W562802392 hasRelatedWork W2033531685 @default.
- W562802392 hasRelatedWork W2050323392 @default.
- W562802392 hasRelatedWork W2151021446 @default.
- W562802392 hasRelatedWork W2264001480 @default.
- W562802392 hasRelatedWork W2374894797 @default.
- W562802392 hasRelatedWork W2380426006 @default.
- W562802392 hasRelatedWork W2609814225 @default.
- W562802392 hasRelatedWork W3148095850 @default.
- W562802392 hasRelatedWork W4251677248 @default.
- W562802392 isParatext "false" @default.
- W562802392 isRetracted "false" @default.
- W562802392 magId "562802392" @default.
- W562802392 workType "book-chapter" @default.