Matches in SemOpenAlex for { <https://semopenalex.org/work/W564380462> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W564380462 abstract "This paper compares the performance of six widely applied techniques to estimate panel VARs from macroeconomic (large T ) data. We show that the bias of the popular least squares dummy variable estimator remains substantial even when the time dimension of the dataset is relatively large. Adopting a bias correction to the simple xed-e¤ects estimator is strongly recommended to obtain consistent estimates of the implied impulse response functions. Multivariate extensions of the GMM-type estimators usually applied for estimating single-equation dynamic panel data models perform reasonably well in terms of bias, but poorly in terms of root mean square error, in particular if the variance of the xed e¤ects is large relative to the variance of the innovations. To illustrate the methodological arguments we present an application in which we use annual OECD country data to estimate the e¤ects of changes in government consumption on aggregate output, private consumption, investment, and real wages. Keywords: Panel Vector Autoregressions, Simulation, Fiscal Policy E¤ects JEL classi cation: C13, C33, E62, E00 Address: TU Dortmund University, Department of Economics, Vogelpothsweg 87, D-44227 Dortmund, Germany. Email: falko.juessen@tu-dortmund.de Corresponding author. Address: TU Dortmund University, Department of Economics, Vogelpothsweg 87, D-44227 Dortmund, Germany. Email: ludger.linnemann@tu-dortmund.de Financial support by the Deutsche Forschungsgemeinschaft (SFB 823, Statistical modelling of nonlinear dynamic processes) is gratefully acknowledged. 1 Introduction Macroeconomists make extensive use of vector autoregressive models (VARs) to estimate the evolution and the interdependencies between multiple time series. Estimating VARs from panel data has generated interest, mainly because panel VARs allow one to control for unobserved heterogeneity and provide more precise estimates of the VAR coe¢ cients and thus the implied impulse response functions. Many macro studies have estimated panel VARs using existing techniques for singleequation dynamic panel data models, see Section 2 for a list of applications. In such models, it is well-known that the simple least squares dummy variable (LSDV) estimator is not consistent for a nite time dimension T even when the cross-sectional dimension N gets large, see e.g. Nickell (1981). Previous studies estimating macro panel VARs have typically followed one of two strategies to address this issue. The rst strategy is to use instrumental variables or generalized method of moments techniques. A second strategy is to adhere to the simple LSDV estimator, referring to the fact that its bias approaches zero if the time dimension of the panel dataset approaches in nity. Both strategies have their relative merits. The GMM techniques have been designed for the case of a large cross-sectional dimension relative to the time dimension. Since the number of cross-sectional units (e.g. countries) is often small in macro applications, GMM estimators may appear less suited for estimating macro panel VARs. Concerning the simple LSDV estimator, the critical question is whether the number of time periods encountered in macro studies is su¢ ciently large to make its bias unimportant from an economic point of view. In fact, the economic importance of the bias of the simple LSDV estimator has been a matter of debate in many studies estimating macro panel VARs (see Section 2 for a list of applications). Recent advances in the study of single-equation dynamic panel data models have opened up a third strategy to estimate panel VARs. Kiviet (1995), Hahn and Kuersteiner (2002), Bun and Kiviet (2003, 2006), Bun and Carree (2005, 2006), and Bruno (2005) have suggested bias-corrections to the simple LSDV estimator. In single-equation simulation studies, such bias-corrected estimators have often turned out to be more e¢ cient than GMM-type estimators.4 In this paper we examine the properties of various techniques to estimate panel vector autoregressive models. Throughout the paper, we have macroeconomic applications in mind, which means that we consider highly though not perfectly persistent time series and datasets having relatively small N and relatively large T . The estimation techniques we consider are representatives of the aforementioned three widely applied strategies to estimate macro panel VARs simple xed-e¤ects procedures, bias-corrected xed e¤ects Panel VARs can also be estimated using Bayesian techniques (see e.g. Canova and Ciccarelli 2004 and Canova, Ciccarelli, and Ortega 2007) or likelihood-based procedures (see e.g. Binder, Hsiao, and Pesaran 2005, Yu, de Jong, and Lee 2008, and Mutl 2009)." @default.
- W564380462 created "2016-06-24" @default.
- W564380462 creator A5054785378 @default.
- W564380462 creator A5067005187 @default.
- W564380462 date "2010-06-10" @default.
- W564380462 modified "2023-09-23" @default.
- W564380462 title "Estimating panel VARs from macroeconomic data: Some Monte Carlo evidence and an application to OECD public spending shocks" @default.
- W564380462 cites W1965397506 @default.
- W564380462 cites W1970393812 @default.
- W564380462 cites W1980939162 @default.
- W564380462 cites W1985780619 @default.
- W564380462 cites W1986872223 @default.
- W564380462 cites W1997344016 @default.
- W564380462 cites W2007867145 @default.
- W564380462 cites W2010802592 @default.
- W564380462 cites W2017330260 @default.
- W564380462 cites W2025610165 @default.
- W564380462 cites W2027382631 @default.
- W564380462 cites W2030230544 @default.
- W564380462 cites W2034758977 @default.
- W564380462 cites W2035554302 @default.
- W564380462 cites W2038275129 @default.
- W564380462 cites W2039973089 @default.
- W564380462 cites W2041535038 @default.
- W564380462 cites W2043126980 @default.
- W564380462 cites W2043217593 @default.
- W564380462 cites W2053625815 @default.
- W564380462 cites W2066614226 @default.
- W564380462 cites W2081896643 @default.
- W564380462 cites W2086556222 @default.
- W564380462 cites W2092532477 @default.
- W564380462 cites W2097978133 @default.
- W564380462 cites W2111557483 @default.
- W564380462 cites W2115895865 @default.
- W564380462 cites W2133532944 @default.
- W564380462 cites W2139716534 @default.
- W564380462 cites W2143067489 @default.
- W564380462 cites W2144357229 @default.
- W564380462 cites W2149530077 @default.
- W564380462 cites W2890056833 @default.
- W564380462 cites W2947626232 @default.
- W564380462 cites W3122798122 @default.
- W564380462 cites W3122925388 @default.
- W564380462 cites W3123375797 @default.
- W564380462 cites W3124536824 @default.
- W564380462 cites W3125633963 @default.
- W564380462 cites W3125713849 @default.
- W564380462 doi "https://doi.org/10.17877/de290r-13008" @default.
- W564380462 hasPublicationYear "2010" @default.
- W564380462 type Work @default.
- W564380462 sameAs 564380462 @default.
- W564380462 citedByCount "3" @default.
- W564380462 countsByYear W5643804622015 @default.
- W564380462 countsByYear W5643804622016 @default.
- W564380462 crossrefType "journal-article" @default.
- W564380462 hasAuthorship W564380462A5054785378 @default.
- W564380462 hasAuthorship W564380462A5067005187 @default.
- W564380462 hasConcept C105795698 @default.
- W564380462 hasConcept C149782125 @default.
- W564380462 hasConcept C159877910 @default.
- W564380462 hasConcept C162324750 @default.
- W564380462 hasConcept C185429906 @default.
- W564380462 hasConcept C19499675 @default.
- W564380462 hasConcept C33923547 @default.
- W564380462 hasConcept C6422946 @default.
- W564380462 hasConceptScore W564380462C105795698 @default.
- W564380462 hasConceptScore W564380462C149782125 @default.
- W564380462 hasConceptScore W564380462C159877910 @default.
- W564380462 hasConceptScore W564380462C162324750 @default.
- W564380462 hasConceptScore W564380462C185429906 @default.
- W564380462 hasConceptScore W564380462C19499675 @default.
- W564380462 hasConceptScore W564380462C33923547 @default.
- W564380462 hasConceptScore W564380462C6422946 @default.
- W564380462 hasLocation W5643804621 @default.
- W564380462 hasOpenAccess W564380462 @default.
- W564380462 hasPrimaryLocation W5643804621 @default.
- W564380462 hasRelatedWork W2081068572 @default.
- W564380462 hasRelatedWork W2092714837 @default.
- W564380462 hasRelatedWork W2109479125 @default.
- W564380462 hasRelatedWork W2134246329 @default.
- W564380462 hasRelatedWork W2166377256 @default.
- W564380462 hasRelatedWork W2234999246 @default.
- W564380462 hasRelatedWork W2517688133 @default.
- W564380462 hasRelatedWork W2891666398 @default.
- W564380462 hasRelatedWork W3105514068 @default.
- W564380462 hasRelatedWork W3117827429 @default.
- W564380462 hasRelatedWork W3121188044 @default.
- W564380462 hasRelatedWork W3121538676 @default.
- W564380462 hasRelatedWork W3122272515 @default.
- W564380462 hasRelatedWork W3124137062 @default.
- W564380462 hasRelatedWork W3125926164 @default.
- W564380462 hasRelatedWork W3131569515 @default.
- W564380462 hasRelatedWork W3163342990 @default.
- W564380462 hasRelatedWork W3191801646 @default.
- W564380462 hasRelatedWork W3203026078 @default.
- W564380462 hasRelatedWork W1679086357 @default.
- W564380462 isParatext "false" @default.
- W564380462 isRetracted "false" @default.
- W564380462 magId "564380462" @default.
- W564380462 workType "article" @default.