Matches in SemOpenAlex for { <https://semopenalex.org/work/W564958369> ?p ?o ?g. }
- W564958369 abstract "Graph searching problems are described as games played on graphs, between a set of searchers and a fugitive. Variants of the game restrict the abilities of the searchers and the fugitive and the corresponding search number (the least number of searchers that have a winning strategy) is related to several well-known parameters in graph theory. One popular variant is called the Cops and Robber game, where the searchers (cops) and the fugitive (robber) move in rounds, and in each round they move to an adjacent vertex. This game, defined in late 1970’s, has been studied intensively. The most famous open problem is Meyniel’s conjecture, which states that the cop number (the minimum number of cops that can always capture the robber) of a connected graph on n vertices is O( √ n). We consider a version of the Cops and Robber game, where the robber is faster than the cops, but is not allowed to jump over the cops. This version was first studied in 2008. We show that when the robber has speed s, the cop number of a connected n-vertex graph can be as large as Ω(n). This improves the Ω(n s−3 s−2 ) lower bound of Frieze, Krivelevich, and Loh (Variations on Cops and Robbers, J. Graph Theory, to appear). We also conjecture a general upper bound O(n) for the cop number, generalizing Meyniel’s conjecture. Then we focus on the version where the robber is infinitely fast, but is again not allowed to jump over the cops. We give a mathematical characterization for graphs with cop number one. For a graph with treewidth tw and maximum degree ∆, we prove the cop number is between tw+1 ∆+1 and tw + 1. Using this we show that the cop number of the m-dimensional hypercube is between c1n m √ m and c2n m for some constants c1 and c2. If G is a connected interval graph on n vertices, then we give a polynomial time 3-approximation algorithm for finding the cop number of G, and prove that the cop number is O( √ n). We prove that given n, there exists a connected chordal graph on n vertices with cop number Ω(n/ log n). We show a lower bound for the cop numbers of expander graphs, and use this to prove that a random G ∈ G(n, p) that is not very sparse, asymptotically almost surely has cop number between d1 p and d2 log(np) p for suitable constants d1 and d2. Moreover, we prove that a fixed-degree regular random graph with n vertices asymptotically almost surely has cop number Θ(n)." @default.
- W564958369 created "2016-06-24" @default.
- W564958369 creator A5089076722 @default.
- W564958369 date "2011-03-24" @default.
- W564958369 modified "2023-09-24" @default.
- W564958369 title "Cops and Robber Game with a Fast Robber" @default.
- W564958369 cites W1487870616 @default.
- W564958369 cites W1497318709 @default.
- W564958369 cites W1537525952 @default.
- W564958369 cites W1561296992 @default.
- W564958369 cites W1602204928 @default.
- W564958369 cites W1606480398 @default.
- W564958369 cites W1664777773 @default.
- W564958369 cites W1833292044 @default.
- W564958369 cites W1980595063 @default.
- W564958369 cites W1992555158 @default.
- W564958369 cites W1993216347 @default.
- W564958369 cites W1995612970 @default.
- W564958369 cites W1998631802 @default.
- W564958369 cites W2000630284 @default.
- W564958369 cites W2001451501 @default.
- W564958369 cites W2008292658 @default.
- W564958369 cites W2012220350 @default.
- W564958369 cites W2013405119 @default.
- W564958369 cites W2015309545 @default.
- W564958369 cites W2018963243 @default.
- W564958369 cites W2019238673 @default.
- W564958369 cites W2028400828 @default.
- W564958369 cites W2046635105 @default.
- W564958369 cites W2047303756 @default.
- W564958369 cites W2052812513 @default.
- W564958369 cites W2055205054 @default.
- W564958369 cites W2065848091 @default.
- W564958369 cites W2067342608 @default.
- W564958369 cites W2068871408 @default.
- W564958369 cites W2080300451 @default.
- W564958369 cites W2082572566 @default.
- W564958369 cites W2094909623 @default.
- W564958369 cites W2109300296 @default.
- W564958369 cites W2163619062 @default.
- W564958369 cites W2167810763 @default.
- W564958369 cites W2177605306 @default.
- W564958369 cites W2295428206 @default.
- W564958369 cites W2611093227 @default.
- W564958369 cites W2740682834 @default.
- W564958369 cites W2796393063 @default.
- W564958369 cites W2798588639 @default.
- W564958369 cites W2952665256 @default.
- W564958369 hasPublicationYear "2011" @default.
- W564958369 type Work @default.
- W564958369 sameAs 564958369 @default.
- W564958369 citedByCount "0" @default.
- W564958369 crossrefType "dissertation" @default.
- W564958369 hasAuthorship W564958369A5089076722 @default.
- W564958369 hasConcept C114614502 @default.
- W564958369 hasConcept C118615104 @default.
- W564958369 hasConcept C121332964 @default.
- W564958369 hasConcept C132525143 @default.
- W564958369 hasConcept C134306372 @default.
- W564958369 hasConcept C2780695682 @default.
- W564958369 hasConcept C2780990831 @default.
- W564958369 hasConcept C33923547 @default.
- W564958369 hasConcept C62520636 @default.
- W564958369 hasConcept C77553402 @default.
- W564958369 hasConcept C80899671 @default.
- W564958369 hasConceptScore W564958369C114614502 @default.
- W564958369 hasConceptScore W564958369C118615104 @default.
- W564958369 hasConceptScore W564958369C121332964 @default.
- W564958369 hasConceptScore W564958369C132525143 @default.
- W564958369 hasConceptScore W564958369C134306372 @default.
- W564958369 hasConceptScore W564958369C2780695682 @default.
- W564958369 hasConceptScore W564958369C2780990831 @default.
- W564958369 hasConceptScore W564958369C33923547 @default.
- W564958369 hasConceptScore W564958369C62520636 @default.
- W564958369 hasConceptScore W564958369C77553402 @default.
- W564958369 hasConceptScore W564958369C80899671 @default.
- W564958369 hasLocation W5649583691 @default.
- W564958369 hasOpenAccess W564958369 @default.
- W564958369 hasPrimaryLocation W5649583691 @default.
- W564958369 hasRelatedWork W1978284948 @default.
- W564958369 hasRelatedWork W2046320674 @default.
- W564958369 hasRelatedWork W2046635105 @default.
- W564958369 hasRelatedWork W2161996279 @default.
- W564958369 hasRelatedWork W2512610701 @default.
- W564958369 hasRelatedWork W2768050560 @default.
- W564958369 hasRelatedWork W2899632040 @default.
- W564958369 hasRelatedWork W2946333614 @default.
- W564958369 hasRelatedWork W2950060509 @default.
- W564958369 hasRelatedWork W2952927905 @default.
- W564958369 hasRelatedWork W2952930798 @default.
- W564958369 hasRelatedWork W2962749834 @default.
- W564958369 hasRelatedWork W2964268464 @default.
- W564958369 hasRelatedWork W2967630780 @default.
- W564958369 hasRelatedWork W3009875838 @default.
- W564958369 hasRelatedWork W3014520657 @default.
- W564958369 hasRelatedWork W3158669829 @default.
- W564958369 hasRelatedWork W3179132720 @default.
- W564958369 hasRelatedWork W3186823792 @default.
- W564958369 hasRelatedWork W3202436011 @default.
- W564958369 isParatext "false" @default.