Matches in SemOpenAlex for { <https://semopenalex.org/work/W56769319> ?p ?o ?g. }
- W56769319 abstract "Abstract : This dissertation addresses the problem of detecting buried explosive threats (i.e. landmines and improvised explosive devices) with ground-penetrating radar (GPR) and hyperspectral imaging (HSI) across widely-varying environmental conditions. Automated detection of buried objects with GPR and HSI is particularly difficult due to the sensitivity of sensor phenomenology to variations in local environmental conditions. Past approaches have attempted to mitigate the effects of ambient factors by designing statistical detection and classification algorithms to be invariant to such conditions. An alternative approach to improving detection performance is to consider exploiting differences in sensor behavior across environments rather than mitigating them, and treat changes in the background data as a possible source of supplemental information for the task of classifying targets and non-targets. This approach is referred to as context-dependent learning. Although past researchers have proposed context-based approaches to detection and decision fusion, the definition of context used in this work differs from those used in the past. In this work, context is motivated by the physical state of the world from which an observation is made, and not from properties of the observation itself. The proposed context-dependent learning technique therefore utilized additional features that characterize soil properties from the sensor background, and a variety of nonparametric models were proposed for clustering these features into individual contexts. The number of contexts was assumed to be unknown a priori, and was learned via Bayesian inference using Dirichlet process priors. The learned contextual information was then exploited by an ensemble on classifiers trained for classifying targets in each of the learned contexts." @default.
- W56769319 created "2016-06-24" @default.
- W56769319 creator A5065276045 @default.
- W56769319 date "2012-01-01" @default.
- W56769319 modified "2023-09-27" @default.
- W56769319 title "Nonparametric Bayesian Context Learning for Buried Threat Detection" @default.
- W56769319 cites W139044672 @default.
- W56769319 cites W1480376833 @default.
- W56769319 cites W1492221128 @default.
- W56769319 cites W1494137514 @default.
- W56769319 cites W1496451467 @default.
- W56769319 cites W1497995627 @default.
- W56769319 cites W1528056001 @default.
- W56769319 cites W1564896447 @default.
- W56769319 cites W1648445109 @default.
- W56769319 cites W1663973292 @default.
- W56769319 cites W1964718823 @default.
- W56769319 cites W1966082445 @default.
- W56769319 cites W1966082892 @default.
- W56769319 cites W1971423840 @default.
- W56769319 cites W1971719715 @default.
- W56769319 cites W1975226595 @default.
- W56769319 cites W1980300610 @default.
- W56769319 cites W1980601972 @default.
- W56769319 cites W1983524602 @default.
- W56769319 cites W1987551973 @default.
- W56769319 cites W1993295873 @default.
- W56769319 cites W1996107076 @default.
- W56769319 cites W1998239584 @default.
- W56769319 cites W1998742682 @default.
- W56769319 cites W1999738916 @default.
- W56769319 cites W2006425269 @default.
- W56769319 cites W2008759621 @default.
- W56769319 cites W2022775778 @default.
- W56769319 cites W2022820003 @default.
- W56769319 cites W2024684433 @default.
- W56769319 cites W2025072821 @default.
- W56769319 cites W2025653905 @default.
- W56769319 cites W2025967099 @default.
- W56769319 cites W2036630437 @default.
- W56769319 cites W2042649160 @default.
- W56769319 cites W2044068644 @default.
- W56769319 cites W2046254928 @default.
- W56769319 cites W2047370120 @default.
- W56769319 cites W2047870694 @default.
- W56769319 cites W2049633694 @default.
- W56769319 cites W2057176730 @default.
- W56769319 cites W2059424427 @default.
- W56769319 cites W2059501979 @default.
- W56769319 cites W2061112676 @default.
- W56769319 cites W2062692223 @default.
- W56769319 cites W2068474932 @default.
- W56769319 cites W2069429561 @default.
- W56769319 cites W2071303950 @default.
- W56769319 cites W2078552903 @default.
- W56769319 cites W2080903873 @default.
- W56769319 cites W2083638840 @default.
- W56769319 cites W2089484716 @default.
- W56769319 cites W2090879738 @default.
- W56769319 cites W2092858021 @default.
- W56769319 cites W2099403556 @default.
- W56769319 cites W2102751024 @default.
- W56769319 cites W2103845148 @default.
- W56769319 cites W2104005225 @default.
- W56769319 cites W2105488510 @default.
- W56769319 cites W2106638710 @default.
- W56769319 cites W2107090525 @default.
- W56769319 cites W2107710506 @default.
- W56769319 cites W2109006918 @default.
- W56769319 cites W2110991606 @default.
- W56769319 cites W2113054345 @default.
- W56769319 cites W2114396382 @default.
- W56769319 cites W2114486983 @default.
- W56769319 cites W2114667018 @default.
- W56769319 cites W2115979064 @default.
- W56769319 cites W2116952749 @default.
- W56769319 cites W2117496083 @default.
- W56769319 cites W2118166339 @default.
- W56769319 cites W2119327400 @default.
- W56769319 cites W2119945372 @default.
- W56769319 cites W2120296105 @default.
- W56769319 cites W2121479138 @default.
- W56769319 cites W2122976738 @default.
- W56769319 cites W2124793110 @default.
- W56769319 cites W2124957100 @default.
- W56769319 cites W2125838338 @default.
- W56769319 cites W2127498532 @default.
- W56769319 cites W2127523161 @default.
- W56769319 cites W2129624536 @default.
- W56769319 cites W2130314982 @default.
- W56769319 cites W2134344260 @default.
- W56769319 cites W2135537007 @default.
- W56769319 cites W2137710630 @default.
- W56769319 cites W2138489340 @default.
- W56769319 cites W2142063750 @default.
- W56769319 cites W2144535965 @default.
- W56769319 cites W2145814966 @default.
- W56769319 cites W2147114127 @default.
- W56769319 cites W2147633303 @default.
- W56769319 cites W2148609796 @default.