Matches in SemOpenAlex for { <https://semopenalex.org/work/W570180234> ?p ?o ?g. }
- W570180234 abstract "With the dramatic development of the automotive industry and global economy, the motor vehicle has become an indispensable part of daily life. Because of the intensive competition, vehicle manufacturers are investing a large amount of money and time on research in improving the vehicle performance, reducing fuel consumption and meeting the legislative requirement of environmental protection. Engine calibration is a fundamental process of determiningthe vehicle performance in diverse working conditions. Control maps are developed in the calibration process which must be conducted across the entire operating region beforebeing implemented in the engine control unit to regulate engine parameters at the different operating points. The traditional calibration method is based on steady-state (pseudo-static) experiments on the engine. The primary challenge for the process is the testing and optimisationtime that each increases exponentially with additional calibration parameters and control objectives.This thesis presents a basic dynamic black-box model-based calibration method for multivariable control and the method is applied experimentally on a gasoline turbocharged directinjection (GTDI) 2.0L virtual engine. Firstly the engine is characterized by dynamic models. A constrained numerical optimization of fuel consumption is conducted on the models and the optimal data is thus obtained and validated on the virtual system to ensure the accuracy of the models. A dynamic optimization is presented in which the entire data sequence is divided into segments then optimized separately in order to enhance the computational efficiency. A dynamic map is identified using the inverse optimal behaviour. The map is shown to be capable of providing a minimized fuel consumption and generally meeting the demands of engine torque and air-fuel-ratio. The control performance of this feedforward map is further improved by the addition of a closed loop controller. An open loop compensator for torquecontrol and a Smith predictor for air-fuel-ratio control are designed and shown to solve the issues of practical implementation on production engines.A basic pseudo-static engine-based calibration is generated for comparative purposes and the resulting static map is implemented in order to compare the fuel consumption andtorque and air-fuel-ratio control with that of the proposed dynamic calibration method.Methods of optimal test signal design and parameter estimation for polynomial models are particularly detailed and studied in this thesis since polynomial models are frequently used in the process of dynamic calibration and control. Because of their ease of implementation, the input designs with different objective functions and optimization algorithms are discussed. Novel design criteria which lead to an improved parameter estimation and output prediction method are presented and verified using identified models of a 1.6L Zetec engine developed from test data obtained on the Liverpool University Powertrain Laboratory. Practicalamplitude and rate constraints in engine experiments are considered in the optimization and optimal inputs are further validated to be effective in the black box modelling of the virtual engine. An additional experiment of input design for a MIMO model is presented based on a weighted optimization method.Besides the prediction error based estimation method, a simulation error based estimation method is proposed. This novel method is based on an unconstrained numerical optimization and any output fitness criterion can be used as the objective function. The effectiveness is also evaluated in a black box engine modelling and parameter estimations with a better output fitness of a simulation model are provided." @default.
- W570180234 created "2016-06-24" @default.
- W570180234 creator A5063417857 @default.
- W570180234 date "2012-11-01" @default.
- W570180234 modified "2023-09-24" @default.
- W570180234 title "Optimal test signal design and estimation for dynamic powertrain calibration and control" @default.
- W570180234 cites W101878167 @default.
- W570180234 cites W118183761 @default.
- W570180234 cites W1479979375 @default.
- W570180234 cites W1484740961 @default.
- W570180234 cites W1490318080 @default.
- W570180234 cites W1490488263 @default.
- W570180234 cites W1527890324 @default.
- W570180234 cites W1573278279 @default.
- W570180234 cites W1575772124 @default.
- W570180234 cites W1587189474 @default.
- W570180234 cites W1589559424 @default.
- W570180234 cites W1598952354 @default.
- W570180234 cites W16127276 @default.
- W570180234 cites W1679253237 @default.
- W570180234 cites W1899218992 @default.
- W570180234 cites W1923722 @default.
- W570180234 cites W1971536112 @default.
- W570180234 cites W1972112233 @default.
- W570180234 cites W1977988988 @default.
- W570180234 cites W1993170675 @default.
- W570180234 cites W2000868189 @default.
- W570180234 cites W2004322992 @default.
- W570180234 cites W2011927389 @default.
- W570180234 cites W2019038155 @default.
- W570180234 cites W2021436740 @default.
- W570180234 cites W2035722163 @default.
- W570180234 cites W2045687996 @default.
- W570180234 cites W2045828544 @default.
- W570180234 cites W2045899185 @default.
- W570180234 cites W2051104424 @default.
- W570180234 cites W2053904120 @default.
- W570180234 cites W2054137409 @default.
- W570180234 cites W2054875385 @default.
- W570180234 cites W2055882318 @default.
- W570180234 cites W2065265418 @default.
- W570180234 cites W2074401703 @default.
- W570180234 cites W2075184363 @default.
- W570180234 cites W2076941954 @default.
- W570180234 cites W2077658674 @default.
- W570180234 cites W2083068962 @default.
- W570180234 cites W2087070363 @default.
- W570180234 cites W2087864565 @default.
- W570180234 cites W2094899250 @default.
- W570180234 cites W2095275736 @default.
- W570180234 cites W2096362287 @default.
- W570180234 cites W2103496339 @default.
- W570180234 cites W2108371740 @default.
- W570180234 cites W2114976889 @default.
- W570180234 cites W2116149872 @default.
- W570180234 cites W2117812871 @default.
- W570180234 cites W2129617176 @default.
- W570180234 cites W2129651715 @default.
- W570180234 cites W2131588967 @default.
- W570180234 cites W2132124079 @default.
- W570180234 cites W2133288387 @default.
- W570180234 cites W2134957879 @default.
- W570180234 cites W2142413580 @default.
- W570180234 cites W2144031478 @default.
- W570180234 cites W2158394671 @default.
- W570180234 cites W2160456562 @default.
- W570180234 cites W2166224184 @default.
- W570180234 cites W2256145429 @default.
- W570180234 cites W2353808758 @default.
- W570180234 cites W2472399466 @default.
- W570180234 cites W2486857422 @default.
- W570180234 cites W2502444387 @default.
- W570180234 cites W2732499247 @default.
- W570180234 cites W2797394743 @default.
- W570180234 cites W287445001 @default.
- W570180234 cites W3026675768 @default.
- W570180234 cites W3030489013 @default.
- W570180234 cites W3030562258 @default.
- W570180234 cites W3121736260 @default.
- W570180234 cites W46979895 @default.
- W570180234 cites W592312525 @default.
- W570180234 cites W593004535 @default.
- W570180234 cites W603923844 @default.
- W570180234 cites W633215612 @default.
- W570180234 cites W636008037 @default.
- W570180234 cites W65738273 @default.
- W570180234 cites W2114001875 @default.
- W570180234 cites W2119668646 @default.
- W570180234 hasPublicationYear "2012" @default.
- W570180234 type Work @default.
- W570180234 sameAs 570180234 @default.
- W570180234 citedByCount "0" @default.
- W570180234 crossrefType "dissertation" @default.
- W570180234 hasAuthorship W570180234A5063417857 @default.
- W570180234 hasConcept C105795698 @default.
- W570180234 hasConcept C111919701 @default.
- W570180234 hasConcept C121332964 @default.
- W570180234 hasConcept C127413603 @default.
- W570180234 hasConcept C133731056 @default.
- W570180234 hasConcept C144171764 @default.