Matches in SemOpenAlex for { <https://semopenalex.org/work/W57312547> ?p ?o ?g. }
Showing items 1 to 55 of
55
with 100 items per page.
- W57312547 abstract "The paper discuses the usage of linear transformations of Hidden Markov Models, normally employed for speaker and environment adaptation, as a way of extracting the emotional components from the speech. A constrained version of Maximum Likelihood Linear Regression (CMLLR) transformation is used as a feature for classification of normal or aroused emotional state. We present a procedure of incrementally building a set of speaker independent acoustic models, that are used to estimate the CMLLR transformations for emotion classification. An audio-video database of spontaneous emotions (AvID) is briefly presented since it forms the basis for the evaluation of the proposed method. Emotion classification using the video part of the database is also described and the added value of combining the visual information with the audio features is shown. Index Terms: emotion recognition, emotional database, linear transformations" @default.
- W57312547 created "2016-06-24" @default.
- W57312547 creator A5038322250 @default.
- W57312547 creator A5041005937 @default.
- W57312547 creator A5042414297 @default.
- W57312547 date "2009-09-06" @default.
- W57312547 modified "2023-10-01" @default.
- W57312547 title "Emotion recognition using linear transformations in combination with video" @default.
- W57312547 cites W110550777 @default.
- W57312547 cites W160851829 @default.
- W57312547 cites W175750906 @default.
- W57312547 cites W2002342963 @default.
- W57312547 cites W2551521043 @default.
- W57312547 cites W3097096317 @default.
- W57312547 cites W3214102110 @default.
- W57312547 doi "https://doi.org/10.21437/interspeech.2009-476" @default.
- W57312547 hasPublicationYear "2009" @default.
- W57312547 type Work @default.
- W57312547 sameAs 57312547 @default.
- W57312547 citedByCount "8" @default.
- W57312547 countsByYear W573125472012 @default.
- W57312547 countsByYear W573125472013 @default.
- W57312547 countsByYear W573125472015 @default.
- W57312547 countsByYear W573125472017 @default.
- W57312547 crossrefType "proceedings-article" @default.
- W57312547 hasAuthorship W57312547A5038322250 @default.
- W57312547 hasAuthorship W57312547A5041005937 @default.
- W57312547 hasAuthorship W57312547A5042414297 @default.
- W57312547 hasConcept C154945302 @default.
- W57312547 hasConcept C2777438025 @default.
- W57312547 hasConcept C28490314 @default.
- W57312547 hasConcept C31972630 @default.
- W57312547 hasConcept C41008148 @default.
- W57312547 hasConceptScore W57312547C154945302 @default.
- W57312547 hasConceptScore W57312547C2777438025 @default.
- W57312547 hasConceptScore W57312547C28490314 @default.
- W57312547 hasConceptScore W57312547C31972630 @default.
- W57312547 hasConceptScore W57312547C41008148 @default.
- W57312547 hasLocation W573125471 @default.
- W57312547 hasOpenAccess W57312547 @default.
- W57312547 hasPrimaryLocation W573125471 @default.
- W57312547 hasRelatedWork W1891287906 @default.
- W57312547 hasRelatedWork W1969923398 @default.
- W57312547 hasRelatedWork W2036807459 @default.
- W57312547 hasRelatedWork W2058170566 @default.
- W57312547 hasRelatedWork W2229312674 @default.
- W57312547 hasRelatedWork W2312116756 @default.
- W57312547 hasRelatedWork W258625772 @default.
- W57312547 hasRelatedWork W2755342338 @default.
- W57312547 hasRelatedWork W2772917594 @default.
- W57312547 hasRelatedWork W3116076068 @default.
- W57312547 isParatext "false" @default.
- W57312547 isRetracted "false" @default.
- W57312547 magId "57312547" @default.
- W57312547 workType "article" @default.