Matches in SemOpenAlex for { <https://semopenalex.org/work/W576209302> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W576209302 abstract "The goal of this proposal is to develop novel modeling techniques to infer individual activity patterns from the large scale cell phone datasets and taxi data from New York City (NYC). As such large scale, disaggregate data provides a unique perspective to understand the complex interactions among human behavior, urban environments and traffic patterns. Urban development shapes the transportation systems, it determines what kind of transportation system a city has, and what does it look like. As an important dynamic component in urban systems, activities of transportation systems in turn capture the dynamics of the entire urban system and enhance knowledge about the complex urban system. This will ultimately contribute to the improvement of level of service and policy making on transportation systems. Taxi as a transportation tool has its unique characteristics. It is capable of capturing urban movement patterns both spatially and temporally since they serve as real‐time probes in the network. Moreover, one may examine the pulse of the city, the gap between supply and demand, real time road congestion and even more. On the other hand, accurate estimation and prediction of urban link travel times are important for improving urban traffic operations and identifying key bottlenecks in the traffic network. They can also benefit users by providing accurate travel time information, thereby allowing better route choice in the network and minimizing overall trip travel time. However, to accurately assess link travel times, it is important to have good real-time information from either in-road sensors such as loop detectors, microwave sensors, or roadside cameras, or mobile sensors (e.g. floating cars) or Global Positioning System (GPS) devices (e.g. cell phones). In most of these cases, only limited information is available related to speed or location, hence, one has to develop appropriate methodologies to accurately estimate the performance metric of interest at the link, path or network level. Taxis equipped with GPS units provide a significant amount of data over days and months thereby providing a rich source of data for estimating network wide performance metrics. However, currently there are limited methodologies making use of this new source of data to estimate link or path travel times in the urban network. Within this context, this study proposes a new method for estimating hourly urban link travel times using large-scale taxicab data with partial information. The taxicab data used in this research provides limited trip information, which only contains the origin and destination location coordinates, travel time and distance of a trip. However, the extensive amount of data records compensates for the incompleteness of the data and makes the link travel time estimation possible. A novel algorithm for estimating the link travel times is also proposed and tested in this research." @default.
- W576209302 created "2016-06-24" @default.
- W576209302 creator A5018158882 @default.
- W576209302 creator A5052921346 @default.
- W576209302 creator A5062312211 @default.
- W576209302 creator A5088536140 @default.
- W576209302 date "2013-09-01" @default.
- W576209302 modified "2023-09-26" @default.
- W576209302 title "The Use of Large Scale Datasets for Understanding Traffic Network State" @default.
- W576209302 hasPublicationYear "2013" @default.
- W576209302 type Work @default.
- W576209302 sameAs 576209302 @default.
- W576209302 citedByCount "0" @default.
- W576209302 crossrefType "journal-article" @default.
- W576209302 hasAuthorship W576209302A5018158882 @default.
- W576209302 hasAuthorship W576209302A5052921346 @default.
- W576209302 hasAuthorship W576209302A5062312211 @default.
- W576209302 hasAuthorship W576209302A5088536140 @default.
- W576209302 hasConcept C119857082 @default.
- W576209302 hasConcept C127413603 @default.
- W576209302 hasConcept C144133560 @default.
- W576209302 hasConcept C162853370 @default.
- W576209302 hasConcept C205649164 @default.
- W576209302 hasConcept C22212356 @default.
- W576209302 hasConcept C26517878 @default.
- W576209302 hasConcept C2778459138 @default.
- W576209302 hasConcept C2778755073 @default.
- W576209302 hasConcept C2779888511 @default.
- W576209302 hasConcept C2780378061 @default.
- W576209302 hasConcept C38652104 @default.
- W576209302 hasConcept C41008148 @default.
- W576209302 hasConcept C58640448 @default.
- W576209302 hasConcept C64093975 @default.
- W576209302 hasConceptScore W576209302C119857082 @default.
- W576209302 hasConceptScore W576209302C127413603 @default.
- W576209302 hasConceptScore W576209302C144133560 @default.
- W576209302 hasConceptScore W576209302C162853370 @default.
- W576209302 hasConceptScore W576209302C205649164 @default.
- W576209302 hasConceptScore W576209302C22212356 @default.
- W576209302 hasConceptScore W576209302C26517878 @default.
- W576209302 hasConceptScore W576209302C2778459138 @default.
- W576209302 hasConceptScore W576209302C2778755073 @default.
- W576209302 hasConceptScore W576209302C2779888511 @default.
- W576209302 hasConceptScore W576209302C2780378061 @default.
- W576209302 hasConceptScore W576209302C38652104 @default.
- W576209302 hasConceptScore W576209302C41008148 @default.
- W576209302 hasConceptScore W576209302C58640448 @default.
- W576209302 hasConceptScore W576209302C64093975 @default.
- W576209302 hasLocation W5762093021 @default.
- W576209302 hasOpenAccess W576209302 @default.
- W576209302 hasPrimaryLocation W5762093021 @default.
- W576209302 hasRelatedWork W1982901406 @default.
- W576209302 hasRelatedWork W2004074431 @default.
- W576209302 hasRelatedWork W2097127615 @default.
- W576209302 hasRelatedWork W2106110155 @default.
- W576209302 hasRelatedWork W2127012233 @default.
- W576209302 hasRelatedWork W2173721748 @default.
- W576209302 hasRelatedWork W2217061759 @default.
- W576209302 hasRelatedWork W2779437268 @default.
- W576209302 hasRelatedWork W2782078221 @default.
- W576209302 hasRelatedWork W2899511117 @default.
- W576209302 hasRelatedWork W2976168788 @default.
- W576209302 hasRelatedWork W2987690833 @default.
- W576209302 hasRelatedWork W3022254817 @default.
- W576209302 hasRelatedWork W3207798725 @default.
- W576209302 hasRelatedWork W579770329 @default.
- W576209302 hasRelatedWork W620239184 @default.
- W576209302 hasRelatedWork W832618888 @default.
- W576209302 hasRelatedWork W2958229509 @default.
- W576209302 hasRelatedWork W3020057028 @default.
- W576209302 hasRelatedWork W3111465942 @default.
- W576209302 isParatext "false" @default.
- W576209302 isRetracted "false" @default.
- W576209302 magId "576209302" @default.
- W576209302 workType "article" @default.