Matches in SemOpenAlex for { <https://semopenalex.org/work/W57669504> ?p ?o ?g. }
- W57669504 endingPage "60" @default.
- W57669504 startingPage "46" @default.
- W57669504 abstract "Advanced glycation end products (AGEs) are the reactive derivatives of nonenzymatic glucose-macromolecule condensation products. Aging human tissues accumulate AGEs in an age-dependent manner and contribute to age-related functional changes in vital organs. We have shown previously that AGE scavenger receptors are present on monocyte/macrophages, lymphocytes, and other cells. However, it remains unclear whether the human brain can efficiently eliminate AGE-modified proteins and whether excessive AGEs can contribute to inflammatory changes leading to brain injury in aging.To explore the expression and characteristics of AGE-binding proteins on CNS glia components and their putative function, such as degradation of AGE-modified proteins, primary human astrocytes and human monocytes (as a microglial cell surrogate) and murine microglia (N9) cells and cell membrane extracts were used. Immunohistochemistry was used to examine the distribution of AGE-binding proteins in the human hippocampus; RT-PCR techniques were used to examine the biologic effects of AGEs and a model AGE compound, FFI, on AGE-binding protein modulation and cytokine responses of human astrocytes and monocytes.Our results showed that AGE-binding proteins AGE-R1, -R2, and -R3 are present in glial cells. Western blot analyses and radiolabeled ligand binding studies show that AGE-R1 and -R3 from human astrocytes bind AGE-modified proteins; binding could be blocked by anti-AGE-R1 and anti-AGE-R3 antibodies, respectively. Immunohistochemistry showed that AGE-R1 and -R2 are expressed mainly in neurons; only some glial cells express these AGE-binding proteins. In contrast, AGE-R3 was found only on those astrocytes whose positively stained foot processes extend and surround the sheath of microcapillaries. RT-PCR results showed that mRNAs of the three AGE-binding proteins are expressed constitutively in human astrocytes and monocytes, and receptor transcripts are not regulated by exogenous AGEs, the model AGE compound FFI, or phorbol ester. At the concentrations used, GM-CSF appears to be the only cytokine whose transcript and protein levels are regulated in human astrocytes by exogenous AGEs.The selective presence of AGE-binding proteins in pyramidal neurons and glial cells and their roles in degrading AGE-modified protein in glial cells suggest that the human brain has a mechanism(s) to clear AGE-modified proteins. Without this capacity, accumulation of AGEs extracellularly could stimulate glial cells to produce the major inflammatory cytokine GM-CSF, which has been shown to be capable of up-regulating AGE-R3. It remains to be determined whether AGE-binding proteins could be aberrant or down-regulated under certain pathological conditions, resulting in an insidious inflammatory state of the CNS in some aging humans." @default.
- W57669504 created "2016-06-24" @default.
- W57669504 creator A5009533777 @default.
- W57669504 creator A5021790851 @default.
- W57669504 creator A5069001170 @default.
- W57669504 creator A5073037534 @default.
- W57669504 date "1998-01-01" @default.
- W57669504 modified "2023-10-17" @default.
- W57669504 title "Receptors for Advanced Glycosylation Endproducts in Human Brain: Role in Brain Homeostasis" @default.
- W57669504 cites W1502047387 @default.
- W57669504 cites W1507214593 @default.
- W57669504 cites W1522234390 @default.
- W57669504 cites W1547902391 @default.
- W57669504 cites W1966399259 @default.
- W57669504 cites W1970936597 @default.
- W57669504 cites W1971805587 @default.
- W57669504 cites W1976142920 @default.
- W57669504 cites W1977660364 @default.
- W57669504 cites W1985417086 @default.
- W57669504 cites W1987611063 @default.
- W57669504 cites W1990051325 @default.
- W57669504 cites W1991683975 @default.
- W57669504 cites W1992380863 @default.
- W57669504 cites W1995268976 @default.
- W57669504 cites W1998614770 @default.
- W57669504 cites W1999932951 @default.
- W57669504 cites W2001638182 @default.
- W57669504 cites W2013330436 @default.
- W57669504 cites W2018070696 @default.
- W57669504 cites W2020337399 @default.
- W57669504 cites W2027146351 @default.
- W57669504 cites W2039402104 @default.
- W57669504 cites W2042978481 @default.
- W57669504 cites W2045560271 @default.
- W57669504 cites W2047672591 @default.
- W57669504 cites W2049167261 @default.
- W57669504 cites W2051180148 @default.
- W57669504 cites W2058426249 @default.
- W57669504 cites W2061747759 @default.
- W57669504 cites W2062532849 @default.
- W57669504 cites W2063900850 @default.
- W57669504 cites W2067829426 @default.
- W57669504 cites W2068793587 @default.
- W57669504 cites W206963456 @default.
- W57669504 cites W2073173912 @default.
- W57669504 cites W2083856205 @default.
- W57669504 cites W2085868003 @default.
- W57669504 cites W2088405534 @default.
- W57669504 cites W2089632138 @default.
- W57669504 cites W2109759840 @default.
- W57669504 cites W2110224271 @default.
- W57669504 cites W2112203309 @default.
- W57669504 cites W2114507328 @default.
- W57669504 cites W2120833123 @default.
- W57669504 cites W2123638779 @default.
- W57669504 cites W2129049321 @default.
- W57669504 cites W2133299624 @default.
- W57669504 cites W2142490204 @default.
- W57669504 cites W2144503907 @default.
- W57669504 cites W2145593180 @default.
- W57669504 cites W2150227236 @default.
- W57669504 cites W2150844478 @default.
- W57669504 cites W2155456675 @default.
- W57669504 cites W2163326592 @default.
- W57669504 cites W2168994316 @default.
- W57669504 cites W2216626210 @default.
- W57669504 cites W2417810345 @default.
- W57669504 cites W2469180816 @default.
- W57669504 doi "https://doi.org/10.1007/bf03401729" @default.
- W57669504 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2230261" @default.
- W57669504 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/9513189" @default.
- W57669504 hasPublicationYear "1998" @default.
- W57669504 type Work @default.
- W57669504 sameAs 57669504 @default.
- W57669504 citedByCount "56" @default.
- W57669504 countsByYear W576695042012 @default.
- W57669504 countsByYear W576695042013 @default.
- W57669504 countsByYear W576695042014 @default.
- W57669504 countsByYear W576695042015 @default.
- W57669504 countsByYear W576695042016 @default.
- W57669504 countsByYear W576695042017 @default.
- W57669504 countsByYear W576695042021 @default.
- W57669504 countsByYear W576695042022 @default.
- W57669504 countsByYear W576695042023 @default.
- W57669504 crossrefType "journal-article" @default.
- W57669504 hasAuthorship W57669504A5009533777 @default.
- W57669504 hasAuthorship W57669504A5021790851 @default.
- W57669504 hasAuthorship W57669504A5069001170 @default.
- W57669504 hasAuthorship W57669504A5073037534 @default.
- W57669504 hasBestOaLocation W576695041 @default.
- W57669504 hasConcept C104317684 @default.
- W57669504 hasConcept C147990577 @default.
- W57669504 hasConcept C169760540 @default.
- W57669504 hasConcept C170493617 @default.
- W57669504 hasConcept C203014093 @default.
- W57669504 hasConcept C204232928 @default.
- W57669504 hasConcept C2776415932 @default.
- W57669504 hasConcept C2776914184 @default.