Matches in SemOpenAlex for { <https://semopenalex.org/work/W577421504> ?p ?o ?g. }
- W577421504 endingPage "220" @default.
- W577421504 startingPage "210" @default.
- W577421504 abstract "Feature selection is an important preprocessing step in machine learning and data mining, and feature criterion arises a key issue in the construction of feature selection algorithms. Mutual information is one of the widely used criteria in feature selection, which determines the relevance between features and target classes. Some mutual information-based feature selection algorithms have been extensively studied, but less effort has been made to investigate the feature selection issue in incomplete data. In this paper, combined with the tolerance information granules in rough sets, the mutual information criterion is provided for evaluating candidate features in incomplete data, which not only utilizes the largest mutual information with the target class but also takes into consideration the redundancy between selected features. We first validate the feasibility of the mutual information. Then an effective mutual information-based feature selection algorithm with forward greedy strategy is developed in incomplete data. To further accelerate the feature selection process, the selection of candidate features is implemented in a dwindling object set. Compared with existing feature selection algorithms, the experimental results on different real data sets show that the proposed algorithm is more effective for feature selection in incomplete data at most cases." @default.
- W577421504 created "2016-06-24" @default.
- W577421504 creator A5026471954 @default.
- W577421504 creator A5041110468 @default.
- W577421504 date "2015-11-01" @default.
- W577421504 modified "2023-09-30" @default.
- W577421504 title "Mutual information criterion for feature selection from incomplete data" @default.
- W577421504 cites W1500895378 @default.
- W577421504 cites W1597280037 @default.
- W577421504 cites W1964677778 @default.
- W577421504 cites W1966950541 @default.
- W577421504 cites W1985572766 @default.
- W577421504 cites W1988334416 @default.
- W577421504 cites W2004068299 @default.
- W577421504 cites W2007686858 @default.
- W577421504 cites W2007810691 @default.
- W577421504 cites W2008794359 @default.
- W577421504 cites W2009733097 @default.
- W577421504 cites W2012073623 @default.
- W577421504 cites W2018051788 @default.
- W577421504 cites W2027902860 @default.
- W577421504 cites W2035742098 @default.
- W577421504 cites W2040420455 @default.
- W577421504 cites W2045593662 @default.
- W577421504 cites W2052608046 @default.
- W577421504 cites W2055307975 @default.
- W577421504 cites W205625358 @default.
- W577421504 cites W2061152895 @default.
- W577421504 cites W2061480162 @default.
- W577421504 cites W2082272625 @default.
- W577421504 cites W2088100205 @default.
- W577421504 cites W2089137303 @default.
- W577421504 cites W2090571851 @default.
- W577421504 cites W2090854439 @default.
- W577421504 cites W2091795142 @default.
- W577421504 cites W2095290023 @default.
- W577421504 cites W2095390342 @default.
- W577421504 cites W2096060214 @default.
- W577421504 cites W2098584485 @default.
- W577421504 cites W2115044652 @default.
- W577421504 cites W2125262170 @default.
- W577421504 cites W2130211837 @default.
- W577421504 cites W2133121564 @default.
- W577421504 cites W2134478553 @default.
- W577421504 cites W2135458935 @default.
- W577421504 cites W2135511047 @default.
- W577421504 cites W2140349414 @default.
- W577421504 cites W2148633389 @default.
- W577421504 cites W2150747245 @default.
- W577421504 cites W2154053567 @default.
- W577421504 cites W2156483112 @default.
- W577421504 cites W2165885026 @default.
- W577421504 cites W2170766530 @default.
- W577421504 cites W2171366364 @default.
- W577421504 doi "https://doi.org/10.1016/j.neucom.2015.05.105" @default.
- W577421504 hasPublicationYear "2015" @default.
- W577421504 type Work @default.
- W577421504 sameAs 577421504 @default.
- W577421504 citedByCount "66" @default.
- W577421504 countsByYear W5774215042015 @default.
- W577421504 countsByYear W5774215042016 @default.
- W577421504 countsByYear W5774215042017 @default.
- W577421504 countsByYear W5774215042018 @default.
- W577421504 countsByYear W5774215042019 @default.
- W577421504 countsByYear W5774215042020 @default.
- W577421504 countsByYear W5774215042021 @default.
- W577421504 countsByYear W5774215042022 @default.
- W577421504 countsByYear W5774215042023 @default.
- W577421504 crossrefType "journal-article" @default.
- W577421504 hasAuthorship W577421504A5026471954 @default.
- W577421504 hasAuthorship W577421504A5041110468 @default.
- W577421504 hasConcept C10551718 @default.
- W577421504 hasConcept C105795698 @default.
- W577421504 hasConcept C111012933 @default.
- W577421504 hasConcept C111919701 @default.
- W577421504 hasConcept C11413529 @default.
- W577421504 hasConcept C124101348 @default.
- W577421504 hasConcept C138885662 @default.
- W577421504 hasConcept C148483581 @default.
- W577421504 hasConcept C152124472 @default.
- W577421504 hasConcept C152139883 @default.
- W577421504 hasConcept C153180895 @default.
- W577421504 hasConcept C154945302 @default.
- W577421504 hasConcept C16811321 @default.
- W577421504 hasConcept C2776401178 @default.
- W577421504 hasConcept C2983203078 @default.
- W577421504 hasConcept C33923547 @default.
- W577421504 hasConcept C34736171 @default.
- W577421504 hasConcept C38764148 @default.
- W577421504 hasConcept C41008148 @default.
- W577421504 hasConcept C41895202 @default.
- W577421504 hasConcept C51823790 @default.
- W577421504 hasConcept C81917197 @default.
- W577421504 hasConceptScore W577421504C10551718 @default.
- W577421504 hasConceptScore W577421504C105795698 @default.
- W577421504 hasConceptScore W577421504C111012933 @default.
- W577421504 hasConceptScore W577421504C111919701 @default.
- W577421504 hasConceptScore W577421504C11413529 @default.