Matches in SemOpenAlex for { <https://semopenalex.org/work/W579720195> ?p ?o ?g. }
Showing items 1 to 45 of
45
with 100 items per page.
- W579720195 abstract "AbstractThe semiparametric regression model in matrix form is y=X^T β+f(Z)+e where XT is the matrix of predictor variables for the parametric component, Z is predictor variables of component nonparametric, β = ( β0, β1, β2, . . . , βk)T is the vector (k + 1) × 1 for the unknown parameters, f is an unknown function which in this research using B-spline function approach and e is a random error vector, e ~N(0,σ^2 I). The method of the research is literature study. This research is begun by explaining the semiparametric regression model, semiparametric regression in matrix form, estimating semiparametric regression models using likelihood maximum penalized method by first estimating the parametric part and the nonparametric part and then goes on to conclude from the results of the estimation. The estimation results of the regression model semiparametric using the method of likelihood maximum penalized is ( y) = X β +f y = 〖〖X( X〗^T 〖〖(V〗^(-1))〗^T X)〗^(-1) 〖(y〗^T V^(-1) X-α^T B^T 〖〖(V〗^(-1))〗^T X ) + B [(B^T V^(-1) B + λ K)^(-1) 〖〖〖( X〗^T 〖〖(V〗^(-1))〗^T X)〗^(-1) 〖(y〗^T V^(-1) X-α^T B^T 〖〖(V〗^(-1))〗^T X ) 〗^T X^(-1) V^(-1)-〖 y〗^T V^(-1) B] The estimation results are divided into two parts, namely parametric and nonparametric components, with estimator for the component parametrics is β = 〖〖( X〗^T 〖〖(V〗^(-1))〗^T X)〗^(-1) 〖(y〗^T V^(-1) X-α^T B^T 〖〖(V〗^(-1))〗^T X ) The estimator for the nonparametric component is f = B [(B^T V^(-1) B + λ K)^(-1) 〖 〖〖( X〗^T 〖〖(V〗^(-1))〗^T X)〗^(-1) 〖(y〗^T V^(-1) X-α^T B^T 〖〖(V〗^(-1))〗^T X ) 〗^T X^(-1) V^(-1) ] -[〖 y〗^T V^(-1) B] Keywords: Semiparametric Regression, Matrix of Quadratic Forms, Penalized Maximum Likelihood." @default.
- W579720195 created "2016-06-24" @default.
- W579720195 creator A5075221913 @default.
- W579720195 date "2013-09-14" @default.
- W579720195 modified "2023-09-27" @default.
- W579720195 title "ESTIMASI LIKELIHOOD MAXIMUM PENALIZED DARI MODEL REGRESI SEMIPARAMETRIK" @default.
- W579720195 cites W1607202247 @default.
- W579720195 cites W1824682467 @default.
- W579720195 cites W2034562813 @default.
- W579720195 cites W2162660532 @default.
- W579720195 cites W27605680 @default.
- W579720195 cites W2064142190 @default.
- W579720195 hasPublicationYear "2013" @default.
- W579720195 type Work @default.
- W579720195 sameAs 579720195 @default.
- W579720195 citedByCount "0" @default.
- W579720195 crossrefType "journal-article" @default.
- W579720195 hasAuthorship W579720195A5075221913 @default.
- W579720195 hasConcept C102366305 @default.
- W579720195 hasConcept C105795698 @default.
- W579720195 hasConcept C114614502 @default.
- W579720195 hasConcept C152877465 @default.
- W579720195 hasConcept C185429906 @default.
- W579720195 hasConcept C19539793 @default.
- W579720195 hasConcept C33923547 @default.
- W579720195 hasConcept C49781872 @default.
- W579720195 hasConcept C74127309 @default.
- W579720195 hasConcept C78297888 @default.
- W579720195 hasConceptScore W579720195C102366305 @default.
- W579720195 hasConceptScore W579720195C105795698 @default.
- W579720195 hasConceptScore W579720195C114614502 @default.
- W579720195 hasConceptScore W579720195C152877465 @default.
- W579720195 hasConceptScore W579720195C185429906 @default.
- W579720195 hasConceptScore W579720195C19539793 @default.
- W579720195 hasConceptScore W579720195C33923547 @default.
- W579720195 hasConceptScore W579720195C49781872 @default.
- W579720195 hasConceptScore W579720195C74127309 @default.
- W579720195 hasConceptScore W579720195C78297888 @default.
- W579720195 hasLocation W5797201951 @default.
- W579720195 hasOpenAccess W579720195 @default.
- W579720195 hasPrimaryLocation W5797201951 @default.
- W579720195 isParatext "false" @default.
- W579720195 isRetracted "false" @default.
- W579720195 magId "579720195" @default.
- W579720195 workType "article" @default.