Matches in SemOpenAlex for { <https://semopenalex.org/work/W57980147> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W57980147 endingPage "942" @default.
- W57980147 startingPage "937" @default.
- W57980147 abstract "Decision trees are, besides decision rules, one of the most popular forms of knowledge representation in Knowledge Discovery in Databases process (Fayyad, Piatetsky-Shapiro, Smyth & Uthurusamy, 1996) and implementations of the classical decision tree induction algorithms are included in the majority of data mining systems. A hierarchical structure of a tree-based classifier, where appropriate tests from consecutive nodes are subsequently applied, closely resembles a human way of decision making. This makes decision trees natural and easy to understand even for an inexperienced analyst. The popularity of the decision tree approach can also be explained by their ease of application, fast classification and what may be the most important, their effectiveness. Two main types of decision trees can be distinguished by the type of tests in non-terminal nodes: univariate and multivariate decision trees. In the first group, a single attribute is used in each test. For a continuousvalued feature usually an inequality test with binary outcomes is applied and for a nominal attribute mutually exclusive groups of attribute values are associated with outcomes. As a good representative of univariate inducers, the well-known C4.5 system developed by Quinlan (1993) should be mentioned. In univariate trees a split is equivalent to partitioning the feature space with an axis-parallel hyper-plane. If decision boundaries of a particular dataset are not axis-parallel, using such tests may lead to an overcomplicated classifier. This situation is known as the “staircase effect”. The problem can be mitigated by applying more sophisticated multivariate tests, where more than one feature can be taken into account. The most common form of such tests is an oblique split, which is based on a linear combination of features (hyper-plane). The decision tree which applies only oblique tests is often called oblique or linear, whereas heterogeneous trees with univariate, linear and other multivariate (e.g., instance-based) tests can be called mixed decision trees (Llora & Wilson, 2004). It should be emphasized that computational complexity of the multivariate induction is generally significantly higher than the univariate induction. CART (Breiman, Friedman, Olshen & Stone, 1984) and OC1 (Murthy, Kasif & Salzberg, 1994) are well known examples of multivariate systems." @default.
- W57980147 created "2016-06-24" @default.
- W57980147 creator A5052315074 @default.
- W57980147 creator A5075724243 @default.
- W57980147 date "2011-05-24" @default.
- W57980147 modified "2023-10-17" @default.
- W57980147 title "Global Induction of Decision Trees" @default.
- W57980147 cites W1488493328 @default.
- W57980147 cites W1488832888 @default.
- W57980147 cites W1521475723 @default.
- W57980147 cites W1567797675 @default.
- W57980147 cites W1966735857 @default.
- W57980147 cites W2068596668 @default.
- W57980147 cites W2104597806 @default.
- W57980147 cites W2111022379 @default.
- W57980147 cites W2137226160 @default.
- W57980147 cites W2137663349 @default.
- W57980147 cites W2148239836 @default.
- W57980147 cites W2154225404 @default.
- W57980147 cites W2167682928 @default.
- W57980147 cites W2169482951 @default.
- W57980147 cites W2951539267 @default.
- W57980147 cites W4255486187 @default.
- W57980147 cites W4301173492 @default.
- W57980147 doi "https://doi.org/10.4018/978-1-60566-010-3.ch145" @default.
- W57980147 hasPublicationYear "2011" @default.
- W57980147 type Work @default.
- W57980147 sameAs 57980147 @default.
- W57980147 citedByCount "1" @default.
- W57980147 crossrefType "book-chapter" @default.
- W57980147 hasAuthorship W57980147A5052315074 @default.
- W57980147 hasAuthorship W57980147A5075724243 @default.
- W57980147 hasConcept C154945302 @default.
- W57980147 hasConcept C41008148 @default.
- W57980147 hasConcept C84525736 @default.
- W57980147 hasConceptScore W57980147C154945302 @default.
- W57980147 hasConceptScore W57980147C41008148 @default.
- W57980147 hasConceptScore W57980147C84525736 @default.
- W57980147 hasLocation W579801471 @default.
- W57980147 hasOpenAccess W57980147 @default.
- W57980147 hasPrimaryLocation W579801471 @default.
- W57980147 hasRelatedWork W100509113 @default.
- W57980147 hasRelatedWork W102247055 @default.
- W57980147 hasRelatedWork W1566212037 @default.
- W57980147 hasRelatedWork W1581377645 @default.
- W57980147 hasRelatedWork W1934752042 @default.
- W57980147 hasRelatedWork W2003253977 @default.
- W57980147 hasRelatedWork W2006958199 @default.
- W57980147 hasRelatedWork W2026531206 @default.
- W57980147 hasRelatedWork W2072644090 @default.
- W57980147 hasRelatedWork W2088163015 @default.
- W57980147 hasRelatedWork W2106352953 @default.
- W57980147 hasRelatedWork W2226250300 @default.
- W57980147 hasRelatedWork W2367371323 @default.
- W57980147 hasRelatedWork W2368021554 @default.
- W57980147 hasRelatedWork W2368398071 @default.
- W57980147 hasRelatedWork W2503779294 @default.
- W57980147 hasRelatedWork W3121692807 @default.
- W57980147 hasRelatedWork W3176824754 @default.
- W57980147 hasRelatedWork W97367898 @default.
- W57980147 hasRelatedWork W1955919060 @default.
- W57980147 isParatext "false" @default.
- W57980147 isRetracted "false" @default.
- W57980147 magId "57980147" @default.
- W57980147 workType "book-chapter" @default.