Matches in SemOpenAlex for { <https://semopenalex.org/work/W581674602> ?p ?o ?g. }
- W581674602 endingPage "230" @default.
- W581674602 startingPage "219" @default.
- W581674602 abstract "The objective of this study is to evaluate machine learning algorithms aimed at predicting surgical treatment outcomes in groups of patients with temporal lobe epilepsy (TLE) using only the structural brain connectome. Specifically, the brain connectome is reconstructed using white matter fiber tracts from presurgical diffusion tensor imaging. To achieve our objective, a two-stage connectome-based prediction framework is developed that gradually selects a small number of abnormal network connections that contribute to the surgical treatment outcome, and in each stage a linear kernel operation is used to further improve the accuracy of the learned classifier. Using a 10-fold cross validation strategy, the first stage in the connectome-based framework is able to separate patients with TLE from normal controls with 80% accuracy, and second stage in the connectome-based framework is able to correctly predict the surgical treatment outcome of patients with TLE with 70% accuracy. Compared to existing state-of-the-art methods that use VBM data, the proposed two-stage connectome-based prediction framework is a suitable alternative with comparable prediction performance. Our results additionally show that machine learning algorithms that exclusively use structural connectome data can predict treatment outcomes in epilepsy with similar accuracy compared with expert-based clinical decision. In summary, using the unprecedented information provided in the brain connectome, machine learning algorithms may uncover pathological changes in brain network organization and improve outcome forecasting in the context of epilepsy." @default.
- W581674602 created "2016-06-24" @default.
- W581674602 creator A5000937401 @default.
- W581674602 creator A5035011313 @default.
- W581674602 creator A5036255370 @default.
- W581674602 creator A5046195753 @default.
- W581674602 creator A5051033644 @default.
- W581674602 creator A5061406453 @default.
- W581674602 creator A5065838160 @default.
- W581674602 creator A5067569321 @default.
- W581674602 creator A5082648896 @default.
- W581674602 creator A5091284740 @default.
- W581674602 date "2015-09-01" @default.
- W581674602 modified "2023-10-11" @default.
- W581674602 title "Evaluation of machine learning algorithms for treatment outcome prediction in patients with epilepsy based on structural connectome data" @default.
- W581674602 cites W1494044142 @default.
- W581674602 cites W1541528588 @default.
- W581674602 cites W1970807601 @default.
- W581674602 cites W1971600338 @default.
- W581674602 cites W1982937039 @default.
- W581674602 cites W2000133863 @default.
- W581674602 cites W2001469430 @default.
- W581674602 cites W2001830552 @default.
- W581674602 cites W2005821483 @default.
- W581674602 cites W2009409311 @default.
- W581674602 cites W2015159159 @default.
- W581674602 cites W2022806167 @default.
- W581674602 cites W2031012798 @default.
- W581674602 cites W2036142047 @default.
- W581674602 cites W2039112885 @default.
- W581674602 cites W2041050058 @default.
- W581674602 cites W2045185094 @default.
- W581674602 cites W2050139929 @default.
- W581674602 cites W2060690669 @default.
- W581674602 cites W2071928207 @default.
- W581674602 cites W2077608427 @default.
- W581674602 cites W2079903691 @default.
- W581674602 cites W2085428475 @default.
- W581674602 cites W2094248714 @default.
- W581674602 cites W2100453275 @default.
- W581674602 cites W2100495367 @default.
- W581674602 cites W2102209924 @default.
- W581674602 cites W2107564884 @default.
- W581674602 cites W2109434518 @default.
- W581674602 cites W2111130146 @default.
- W581674602 cites W2119848633 @default.
- W581674602 cites W2122825543 @default.
- W581674602 cites W2124778841 @default.
- W581674602 cites W2128431628 @default.
- W581674602 cites W2129822535 @default.
- W581674602 cites W2130246912 @default.
- W581674602 cites W2130472282 @default.
- W581674602 cites W2130853198 @default.
- W581674602 cites W2136489734 @default.
- W581674602 cites W2142059961 @default.
- W581674602 cites W2143090565 @default.
- W581674602 cites W2153171432 @default.
- W581674602 cites W2159862192 @default.
- W581674602 cites W2160062308 @default.
- W581674602 cites W2161493176 @default.
- W581674602 cites W2166758207 @default.
- W581674602 cites W2171831801 @default.
- W581674602 cites W2317495993 @default.
- W581674602 cites W4239594659 @default.
- W581674602 cites W45106411 @default.
- W581674602 doi "https://doi.org/10.1016/j.neuroimage.2015.06.008" @default.
- W581674602 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4701213" @default.
- W581674602 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26054876" @default.
- W581674602 hasPublicationYear "2015" @default.
- W581674602 type Work @default.
- W581674602 sameAs 581674602 @default.
- W581674602 citedByCount "126" @default.
- W581674602 countsByYear W5816746022012 @default.
- W581674602 countsByYear W5816746022015 @default.
- W581674602 countsByYear W5816746022016 @default.
- W581674602 countsByYear W5816746022017 @default.
- W581674602 countsByYear W5816746022018 @default.
- W581674602 countsByYear W5816746022019 @default.
- W581674602 countsByYear W5816746022020 @default.
- W581674602 countsByYear W5816746022021 @default.
- W581674602 countsByYear W5816746022022 @default.
- W581674602 countsByYear W5816746022023 @default.
- W581674602 crossrefType "journal-article" @default.
- W581674602 hasAuthorship W581674602A5000937401 @default.
- W581674602 hasAuthorship W581674602A5035011313 @default.
- W581674602 hasAuthorship W581674602A5036255370 @default.
- W581674602 hasAuthorship W581674602A5046195753 @default.
- W581674602 hasAuthorship W581674602A5051033644 @default.
- W581674602 hasAuthorship W581674602A5061406453 @default.
- W581674602 hasAuthorship W581674602A5065838160 @default.
- W581674602 hasAuthorship W581674602A5067569321 @default.
- W581674602 hasAuthorship W581674602A5082648896 @default.
- W581674602 hasAuthorship W581674602A5091284740 @default.
- W581674602 hasBestOaLocation W5816746022 @default.
- W581674602 hasConcept C119857082 @default.
- W581674602 hasConcept C126838900 @default.
- W581674602 hasConcept C143409427 @default.
- W581674602 hasConcept C144237770 @default.