Matches in SemOpenAlex for { <https://semopenalex.org/work/W582441128> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W582441128 abstract "This thesis is devoted to exploit strong correlations among ultracold atoms in order to create novel, exotic quantum states. In the first two chapters, we devise dynamical out-of-equilibrium preparation schemes which lead to intriguing final states.First of all, we propose to create the elusive supersolid state via a quantum quench protocol. Supersolids – quantum hybrids exhibiting both superflow and solidity – have been envisioned long ago, but have not been demonstrated in experiment so far. Our proposal to create a supersolid state is perfectly accessible with current technology and may clear the way to the experimental observation of supersolidity.Another out-of-equilibrium preparation scheme is discussed in the second chapter, giving rise to novel Cooper pairs of bosons. Ordinarily, Cooper pairs are composed of fermions – not so in our setup! We show that a Mott state of local bosonic Bell pairs can evolve into a Cooper-paired state of bosons, where the size of the pairs becomes macroscopic. This state can be prepared via a quick, diabatic ramp from the Mott into the superfluid regime.Furthermore, we propose to use bosons featuring conditional-hopping amplitudes in order to create Abelian anyons in one-dimensional optical lattices. We derive an exact mapping between anyons and bosons via a “fractional” Jordan-Wigner transformation. We suggest to employ a laser-assisted tunneling scheme to establish the many-particle state of “conditional-hopping bosons”, thus realizing a gas of Abelian anyons. The fractional statistics phase can be directly tuned by the lasers.The realization of non-Abelian anyons would be especially delightful, due to their significance in topological quantum computation schemes. We propose to employ strongly correlated bosons in one-dimensional optical lattices to create the Pfaffian state – which is known to host non-Abelian anyons as elementary excitations. In this setup, three-body correlations are required to dominate the system, which we model by on-site interactions of atoms with diatomic molecules.Finally, we use strong correlations in one-dimensional systems to create the effect of spin-charge separation, as formulated theoretically first in 1968. For a model of two-component bosons we compute the effective mass of a spin-flip excitation via Bethe Ansatz. In the strongly correlated regime, we show that the effective mass reaches the total mass of all particles in the system. The spin wave thus travels much more slowly than the density wave, giving rise to a strong spin-charge separation." @default.
- W582441128 created "2016-06-24" @default.
- W582441128 creator A5087061758 @default.
- W582441128 date "2009-12-23" @default.
- W582441128 modified "2023-09-26" @default.
- W582441128 title "Strongly Correlated Quantum Physics with Cold Atoms" @default.
- W582441128 cites W1985551959 @default.
- W582441128 cites W2555237290 @default.
- W582441128 hasPublicationYear "2009" @default.
- W582441128 type Work @default.
- W582441128 sameAs 582441128 @default.
- W582441128 citedByCount "0" @default.
- W582441128 crossrefType "book" @default.
- W582441128 hasAuthorship W582441128A5087061758 @default.
- W582441128 hasConcept C111776688 @default.
- W582441128 hasConcept C11924407 @default.
- W582441128 hasConcept C121332964 @default.
- W582441128 hasConcept C147120987 @default.
- W582441128 hasConcept C187483380 @default.
- W582441128 hasConcept C25536358 @default.
- W582441128 hasConcept C33332235 @default.
- W582441128 hasConcept C44280652 @default.
- W582441128 hasConcept C52233224 @default.
- W582441128 hasConcept C62520636 @default.
- W582441128 hasConcept C79118098 @default.
- W582441128 hasConcept C84114770 @default.
- W582441128 hasConcept C85906118 @default.
- W582441128 hasConcept C94715708 @default.
- W582441128 hasConceptScore W582441128C111776688 @default.
- W582441128 hasConceptScore W582441128C11924407 @default.
- W582441128 hasConceptScore W582441128C121332964 @default.
- W582441128 hasConceptScore W582441128C147120987 @default.
- W582441128 hasConceptScore W582441128C187483380 @default.
- W582441128 hasConceptScore W582441128C25536358 @default.
- W582441128 hasConceptScore W582441128C33332235 @default.
- W582441128 hasConceptScore W582441128C44280652 @default.
- W582441128 hasConceptScore W582441128C52233224 @default.
- W582441128 hasConceptScore W582441128C62520636 @default.
- W582441128 hasConceptScore W582441128C79118098 @default.
- W582441128 hasConceptScore W582441128C84114770 @default.
- W582441128 hasConceptScore W582441128C85906118 @default.
- W582441128 hasConceptScore W582441128C94715708 @default.
- W582441128 hasLocation W5824411281 @default.
- W582441128 hasOpenAccess W582441128 @default.
- W582441128 hasPrimaryLocation W5824411281 @default.
- W582441128 hasRelatedWork W1535433464 @default.
- W582441128 hasRelatedWork W1652666084 @default.
- W582441128 hasRelatedWork W2002583548 @default.
- W582441128 hasRelatedWork W2029408650 @default.
- W582441128 hasRelatedWork W2108476578 @default.
- W582441128 hasRelatedWork W2117343445 @default.
- W582441128 hasRelatedWork W2197687698 @default.
- W582441128 hasRelatedWork W2206947643 @default.
- W582441128 hasRelatedWork W2316110681 @default.
- W582441128 hasRelatedWork W2584006631 @default.
- W582441128 hasRelatedWork W2735635400 @default.
- W582441128 hasRelatedWork W2988804267 @default.
- W582441128 hasRelatedWork W2990993801 @default.
- W582441128 hasRelatedWork W3082323724 @default.
- W582441128 hasRelatedWork W3097362661 @default.
- W582441128 hasRelatedWork W3104662970 @default.
- W582441128 hasRelatedWork W3167395407 @default.
- W582441128 hasRelatedWork W3180720780 @default.
- W582441128 hasRelatedWork W927852154 @default.
- W582441128 hasRelatedWork W2183666536 @default.
- W582441128 isParatext "false" @default.
- W582441128 isRetracted "false" @default.
- W582441128 magId "582441128" @default.
- W582441128 workType "book" @default.