Matches in SemOpenAlex for { <https://semopenalex.org/work/W583016736> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W583016736 abstract "Real-world networks, such as the network of neurons in the brain, have structural and dynamical properties that distinguish them from artificially created networks. This thesis studies how a selection of these properties can be applied to the evolution of artificial neural networks (ANNs). Artificial evolution is used to create networks that solve control and pattern recognition tasks. However, the main focus is not on the evolution of successful controllers. Rather, I have studied the characteristics of the search processes leading up to the evolved networks, in an attempt to describe how changes to the structure and dynamics of the evolved networks affect the search landscape and the evolutionary trajectory. Network dynamics is studied by estimating the mutual information between the nodes of the evolved networks, and applying a set of measures inspired by recently proposed theories about the information-theoretic properties of the mammalian brain. The results indicate that the evolved networks’ ability to perform an unstable control task is correlated with the proposed informationtheoretic measures, but that this correlation is far from straightforward, and that more work is needed to achieve measures that can be used to actively guide the evolutionary search in a way that will improve the search efficiency over a wide range of tasks. The study of the relationship between network structure and the evolution of ANNs for pattern recognition focuses on the degree of modularity of the evolved networks. An important difference from earlier studies is the distinction between genotypic modularity and network modularity. The main question is whether modular networks are “better” than non-modular networks, in some sense of the word. The results presented in this thesis work indicate that this is only the case under certain conditions. It is shown that a stochastic mapping from genome to network is an example of such a condition." @default.
- W583016736 created "2016-06-24" @default.
- W583016736 creator A5031920349 @default.
- W583016736 date "2010-01-01" @default.
- W583016736 modified "2023-09-27" @default.
- W583016736 title "Exploring Structural and Dynamical Factors in the Evolution of Artificial Neural Networks" @default.
- W583016736 hasPublicationYear "2010" @default.
- W583016736 type Work @default.
- W583016736 sameAs 583016736 @default.
- W583016736 citedByCount "0" @default.
- W583016736 crossrefType "dissertation" @default.
- W583016736 hasAuthorship W583016736A5031920349 @default.
- W583016736 hasConcept C101468663 @default.
- W583016736 hasConcept C111919701 @default.
- W583016736 hasConcept C118615104 @default.
- W583016736 hasConcept C119857082 @default.
- W583016736 hasConcept C123757187 @default.
- W583016736 hasConcept C136764020 @default.
- W583016736 hasConcept C154945302 @default.
- W583016736 hasConcept C159149176 @default.
- W583016736 hasConcept C2779478453 @default.
- W583016736 hasConcept C33923547 @default.
- W583016736 hasConcept C34947359 @default.
- W583016736 hasConcept C41008148 @default.
- W583016736 hasConcept C50644808 @default.
- W583016736 hasConcept C54355233 @default.
- W583016736 hasConcept C86803240 @default.
- W583016736 hasConceptScore W583016736C101468663 @default.
- W583016736 hasConceptScore W583016736C111919701 @default.
- W583016736 hasConceptScore W583016736C118615104 @default.
- W583016736 hasConceptScore W583016736C119857082 @default.
- W583016736 hasConceptScore W583016736C123757187 @default.
- W583016736 hasConceptScore W583016736C136764020 @default.
- W583016736 hasConceptScore W583016736C154945302 @default.
- W583016736 hasConceptScore W583016736C159149176 @default.
- W583016736 hasConceptScore W583016736C2779478453 @default.
- W583016736 hasConceptScore W583016736C33923547 @default.
- W583016736 hasConceptScore W583016736C34947359 @default.
- W583016736 hasConceptScore W583016736C41008148 @default.
- W583016736 hasConceptScore W583016736C50644808 @default.
- W583016736 hasConceptScore W583016736C54355233 @default.
- W583016736 hasConceptScore W583016736C86803240 @default.
- W583016736 hasLocation W5830167361 @default.
- W583016736 hasOpenAccess W583016736 @default.
- W583016736 hasPrimaryLocation W5830167361 @default.
- W583016736 hasRelatedWork W1542670801 @default.
- W583016736 hasRelatedWork W1556363313 @default.
- W583016736 hasRelatedWork W1598723591 @default.
- W583016736 hasRelatedWork W1972657908 @default.
- W583016736 hasRelatedWork W1998180209 @default.
- W583016736 hasRelatedWork W2021338470 @default.
- W583016736 hasRelatedWork W2042633527 @default.
- W583016736 hasRelatedWork W2080845967 @default.
- W583016736 hasRelatedWork W2092192451 @default.
- W583016736 hasRelatedWork W2111858310 @default.
- W583016736 hasRelatedWork W2154789382 @default.
- W583016736 hasRelatedWork W2169212863 @default.
- W583016736 hasRelatedWork W2402173214 @default.
- W583016736 hasRelatedWork W251905448 @default.
- W583016736 hasRelatedWork W2546300828 @default.
- W583016736 hasRelatedWork W2793155662 @default.
- W583016736 hasRelatedWork W3118329988 @default.
- W583016736 hasRelatedWork W568322944 @default.
- W583016736 hasRelatedWork W6071106 @default.
- W583016736 hasRelatedWork W1953918014 @default.
- W583016736 isParatext "false" @default.
- W583016736 isRetracted "false" @default.
- W583016736 magId "583016736" @default.
- W583016736 workType "dissertation" @default.