Matches in SemOpenAlex for { <https://semopenalex.org/work/W583417595> ?p ?o ?g. }
- W583417595 abstract "List of Contributors. Preface. Editor Biography. PART ONE-FUNDAMENTALS, MODELING, AND EXPERIMENTAL INVESTIGATION OF PHOTOCATALYTIC REACTIONS FOR DIRECT SOLAR HYDROGEN GENERATION. 1 Solar Hydrogen Production by Photoelectrochemical Water Splitting: The Promise and Challenge (Eric L. Miller). 1.1 Introduction. 1.2 Hydrogen or Hype? 1.3 Solar Pathways to Hydrogen. 1.4 Photoelectrochemical Water-Splitting. 1.5 The Semiconductor/Electrolyte Interface. 1.6 Photoelectrode Implementations. 1.7 The PEC Challenge. 1.8 Facing the Challenge: Current PEC Materials Research. Acknowledgments. References. 2 Modeling and Simulation of Photocatalytic Reactions at TiO2 Surfaces (Hideyuki Kamisaka and Koichi Yamashita). 2.1 Importance of Theoretical Studies on TiO2 Systems. 2.2 Doped TiO2 Systems: Carbon and Niobium Doping. 2.3 Surface Hydroxyl Groups and the Photoinduced Hydrophilicity of TiO2. Conversion. 2.4 Dye-Sensitized Solar Cells. 2.5 Future Directions: Ab Initio Simulations and the Local Excited States on TiO2. Acknowledgments. References. 3 Photocatalytic Reactions on Model Single Crystal TiO2 Surfaces (G.I.N. Waterhouse and H. Idriss). 3.1 TiO2 Single-Crystal Surfaces. 3.2 Photoreactions Over Semiconductor Surfaces. 3.3 Ethanol Reactions Over TiO2(110) Surface. 3.4 Photocatalysis and Structure Sensitivity. 3.5 Hydrogen Production from Ethanol Over Au/TiO2 Catalysts. 3.6 Conclusions. References. 4 Fundamental Reactions on Rutile TiO2(110) Model Photocatalysts Studied by High-Resolution Scanning Tunneling Microscopy (Stefan Wendt, Ronnie T. Vang, and Flemming Besenbacher). 4.1 Introduction. 4.2 Geometric Structure and Defects of the Rutile TiO2 (110) Surface. 4.3 Reactions of Water with Oxygen Vacancies. 4.4 Splitting of Paired H Adatoms and Other Reactions Observed on Partly Water Covered TiO2(110). 4.5 O2 Dissociation and the Role of Ti Interstitials. 4.6 Intermediate Steps of the Reaction Between O2 and H Adatoms and the Role of Coadsorbed Water. 4.7 Bonding of Gold Nanoparticles on TiO2(110) in Different Oxidation States. 4.8 Summary and Outlook. References. PART TWO-ELECTRONIC STRUCTURE, ENERGETICS, AND TRANSPORT DYNAMICS OF PHOTOCATALYST NANOSTRUCTURES. 5 Electronic Structure Study of Nanostructured Transition Metal Oxides Using Soft X-Ray Spectroscopy (Jinghua Guo, Per-Anders Glans, Yi-Sheng Liu, and Chinglin Chang). 5.1 Introduction. 5.2 Soft X-Ray Spectroscopy. 5.3 Experiment Set-Up. 5.4 Results and Discussion. Acknowledgments. References. 6 X-ray and Electron Spectroscopy Studies of Oxide Semiconductors for Photoelectrochemical Hydrogen Production (Clemens Heske, Lothar Weinhardt, and Marcus B€ar). 6.1 Introduction. 6.2 Soft X-Ray and Electron Spectroscopies. 6.3 Electronic Surface-Level Positions of WO3 Thin Films. 6.4 Soft X-Ray Spectroscopy of ZnO:Zn3N2 Thin Films. 6.5 In Situ Soft X-Ray Spectroscopy: A Brief Outlook. 6.6 Summary. Acknowledgments. References. 7 Applications of X-Ray Transient Absorption Spectroscopy in Photocatalysis for Hydrogen Generation (Lin X. Chen). 7.1 Introduction. 7.2 X-Ray Transient Absorption Spectroscopy (XTA). 7.3 Tracking Electronic and Nuclear Configurations in Photoexcited Metalloporphyrins. 7.4 Tracking Metal-Center Oxidation States in the MLCT State of Metal Complexes. 7.5 Tracking Transient Metal Oxidation States During Hydrogen Generation. 7.6 Prospects and Challenges in Future Studies. Acknowledgments. References. 8 Fourier-Transform Infrared and Raman Spectroscopy of Pure and Doped TiO2 Photocatalysts (Lars Osterlund). 8.1 Introduction. 8.2 Vibrational Spectroscopy on TiO2 Photocatalysts: Experimental Considerations. 8.3 Raman Spectroscopy of Pure and Doped TiO2 Nanoparticles. 8.4 Gas-Solid Photocatalytic Reactions Probed by FTIR Spectroscopy. 8.5 Model Gas-Solid Reactions on Pure and Doped TiO2 Nanoparticles Studied by FTIR Spectroscopy. 8.6 Summary and Concluding Remarks. Acknowledgments. References. 9 Interfacial Electron Transfer Reactions in CdS Quantum Dot Sensitized TiO2 Nanocrystalline Electrodes (Yasuhiro Tachibana). 9.1 Introduction. 9.2 Nanomaterials. 9.3 Transient Absorption Spectroscopy. 9.4 Controlling Interfacial Electron Transfer Reactions by Nanomaterial Design. 9.5 Application of QD-Sensitized Metal-Oxide Semiconductors to Solar Hydrogen Production. 9.6 Conclusion. Acknowledgments. References. PART THREE-DEVELOPMENT OF ADVANCED NANOSTRUCTURES FOR EFFICIENT SOLAR HYDROGEN PRODUCTION FROM CLASSICAL .LARGE BANDGAP SEMICONDUCTORS. 10 Ordered Titanium Dioxide Nanotubular Arrays as Photoanodes for Hydrogen Generation (M. Misra and K.S. Raja). 10.1 Introduction. 10.2 Crystal Structure of TiO2. References. 11 Electrodeposition of Nanostructured ZnO Films and Their Photoelectrochemical Properties (Torsten Oekermann). 11.1 Introduction. 11.2 Fundamentals of Electrochemical Deposition. 11.3 Electrodeposition of Metal Oxides and Other Compounds. 11.4 Electrodeposition of Zinc Oxide. 11.5 Electrodeposition of One- and Two-Dimensional ZnO Nanostructures. 11.6 Use of Additives in ZnO Electrodeposition. 11.7 Photoelectrochemical and Photovoltaic Properties. 11.8 Photocatalytic Properties. 11.9 Outlook. References. 12 Nanostructured Thin-Film WO3 Photoanodes for Solar Water and Sea-Water Splitting (Bruce D. Alexander and Jan Augustynski). 12.1 Historical Context. 12.2 Macrocrystalline WO3 Films. 12.3 Limitations of Macroscopic WO3. 12.4 Nanostructured Films. 12.5 Tailoring WO3 Films Through a Modified Chimie Douce Synthetic Route. 12.6 Surface Reactions at Nanocrystalline WO3 Electrodes. 12.7 Conclusions and Outlook. References. 13 Nanostructured a-Fe2O3 in PEC Generation of Hydrogen (Vibha R. Satsangi, Sahab Dass, and Rohit Shrivastav). 13.1 Introduction. 13.2 a-Fe2O3. 13.3 Nanostructured a-Fe2O3 Photoelectrodes. 13.5 Efficiency and Hydrogen Production. 13.6 Concluding Remarks. Acknowledgments. References. PART FOUR-NEW DESIGN AND APPROACHES TO BANDGAP PROFILING AND VISIBLE-LIGHT-ACTIVE NANOSTRUCTURES. 14 Photoelectrocatalyst Discovery Using High-Throughput Methods and Combinatorial Chemistry (Alan Kleiman-Shwarsctein, Peng Zhang, Yongsheng Hu, and Eric W. McFarland). 14.1 Introduction. 14.2 The Use of High-Throughput and Combinatorial Methods for the Discovery and Optimization of Photoelectrocatalyst Material Systems. 14.3 Practical Methods of High-Throughput Synthesis of Photoelectrocatalysts. 14.4 Photocatalyst Screening and Characterization. 14.5 Specific Examples of High-Throughput Methodology Applied to Photoelectrocatalysts. 14.6 Summary and Outlook. References. 15 Multidimensional Nanostructures for Solar Water Splitting: Synthesis, Properties, and Applications (Abraham Wolcott and Jin Z. Zhang). 15.1 Motivation for Developing Metal-Oxide Nanostructures. 15.2 Colloidal Methods for 0D Metal-Oxide Nanoparticle Synthesis. 15.3 1D Metal-Oxide Nanostructures. 15.4 2D Metal-Oxide Nanostructures. 15.5 Conclusion. Acknowledgments. References. 16 Nanoparticle-Assembled Catalysts for Photochemical Water Splitting (Frank E. Osterloh). 16.1 Introduction. 16.2 Two-Component Catalysts. 16.3 CdSe Nanoribbons as a Quantum-Confined Water-Splitting Catalyst. 16.4 Conclusion and Outlook. Acknowledgment. References. 17 Quantum-Confined Visible-Light-Active Metal-Oxide Nanostructures for Direct Solar-to-Hydrogen Generation (Lionel Vayssieres). 17.1 Introduction. 17.2 Design of Advanced Semiconductor Nanostructures by Cost-Effective Technique. 17.3 Quantum Confinement Effects for Photovoltaics and Solar Hydrogen Generation. 17.4 Novel Cost-Effective Visible-Light-Active (Hetero)Nanostructures for Solar Hydrogen Generation. 17.5 Conclusion and Perspectives. References. 18 Effects of Metal-Ion Doping, Removal and Exchange on Photocatalytic Activity of Metal Oxides and Nitrides for Overall Water Splitting (Yasunobu Inoue). 18.1 Introduction. 18.2 Experimental Procedures. 18.3 Effects of Metal Ion Doping. 18.4 Effects of Metal-Ion Removal. 18.5 Effects of Metal-Ion Exchange on Photocatalysis. 18.6 Effects of Zn Addition to Indate and Stannate. 18.7 Conclusions. Acknowledgments. References. 19 Supramolecular Complexes as Photoinitiated Electron Collectors: Applications in Solar Hydrogen Production (Shamindri M. Arachchige and Karen J. Brewer). 19.1 Introduction. 19.2 Supramolecular Complexes for Photoinitiated Electron Collection. 19.3 Conclusions. List of Abbreviations. Acknowledgments. References. PART FIVE-NEW DEVICES FOR SOLAR THERMAL HYDROGEN GENERATION. 20 Novel Monolithic Reactors for Solar Thermochemical Water Splitting (Athanasios G. Konstandopoulos and Souzana Lorentzou). 20.1 Introduction. 20.2 Solar Hydrogen Production. 20.3 HYDROSOL Reactor. 20.4 HYDROSOL Process. 20.5 Conclusions. Acknowledgments. References. 21 Solar Thermal and Efficient Solar Thermal/Electrochemical Photo Hydrogen Generation (Stuart Licht). 21.1 Comparison of Solar Hydrogen Processes. 21.2 STEP (Solar Thermal Electrochemical Photo) Generation of H2. 21.3 STEP Theory. 21.4 STEP Experiment: Efficient Solar Water Splitting. 21.5 NonHybrid Solar Thermal Processes. 21.6 Conclusions. References. Index" @default.
- W583417595 created "2016-06-24" @default.
- W583417595 creator A5029139156 @default.
- W583417595 date "2010-01-04" @default.
- W583417595 modified "2023-09-23" @default.
- W583417595 title "On Solar Hydrogen & Nanotechnology" @default.
- W583417595 cites W127791737 @default.
- W583417595 cites W1506545258 @default.
- W583417595 cites W1517767423 @default.
- W583417595 cites W1531675310 @default.
- W583417595 cites W1588080480 @default.
- W583417595 cites W1658182726 @default.
- W583417595 cites W1677708366 @default.
- W583417595 cites W1964162194 @default.
- W583417595 cites W1965495193 @default.
- W583417595 cites W1966159051 @default.
- W583417595 cites W1970279985 @default.
- W583417595 cites W1972144427 @default.
- W583417595 cites W1973993751 @default.
- W583417595 cites W1974896731 @default.
- W583417595 cites W1975782788 @default.
- W583417595 cites W1977031457 @default.
- W583417595 cites W1977279162 @default.
- W583417595 cites W1985223668 @default.
- W583417595 cites W1990039444 @default.
- W583417595 cites W1991077818 @default.
- W583417595 cites W1991469986 @default.
- W583417595 cites W1997110840 @default.
- W583417595 cites W1997938009 @default.
- W583417595 cites W2015601940 @default.
- W583417595 cites W2017706429 @default.
- W583417595 cites W2017982442 @default.
- W583417595 cites W2019467188 @default.
- W583417595 cites W2022060382 @default.
- W583417595 cites W2022256605 @default.
- W583417595 cites W2023173094 @default.
- W583417595 cites W2024519821 @default.
- W583417595 cites W2026121529 @default.
- W583417595 cites W2032386345 @default.
- W583417595 cites W2053589001 @default.
- W583417595 cites W2056793750 @default.
- W583417595 cites W2059081336 @default.
- W583417595 cites W2062973998 @default.
- W583417595 cites W2064324141 @default.
- W583417595 cites W2070500364 @default.
- W583417595 cites W2071406221 @default.
- W583417595 cites W2084048445 @default.
- W583417595 cites W2085752065 @default.
- W583417595 cites W2086597845 @default.
- W583417595 cites W2087706475 @default.
- W583417595 cites W2087711856 @default.
- W583417595 cites W2090976499 @default.
- W583417595 cites W2095284959 @default.
- W583417595 cites W2103542253 @default.
- W583417595 cites W2104060440 @default.
- W583417595 cites W2109615341 @default.
- W583417595 cites W2124128778 @default.
- W583417595 cites W2127285734 @default.
- W583417595 cites W2143570455 @default.
- W583417595 cites W2157424637 @default.
- W583417595 cites W2180164907 @default.
- W583417595 cites W2615281219 @default.
- W583417595 cites W2769584706 @default.
- W583417595 cites W2798634278 @default.
- W583417595 cites W2944926603 @default.
- W583417595 cites W2970779043 @default.
- W583417595 cites W3147289055 @default.
- W583417595 cites W38618506 @default.
- W583417595 cites W595999991 @default.
- W583417595 cites W80133659 @default.
- W583417595 cites W2020357761 @default.
- W583417595 cites W2475031977 @default.
- W583417595 cites W3144626304 @default.
- W583417595 doi "https://doi.org/10.1002/9780470823996" @default.
- W583417595 hasPublicationYear "2010" @default.
- W583417595 type Work @default.
- W583417595 sameAs 583417595 @default.
- W583417595 citedByCount "43" @default.
- W583417595 countsByYear W5834175952012 @default.
- W583417595 countsByYear W5834175952013 @default.
- W583417595 countsByYear W5834175952014 @default.
- W583417595 countsByYear W5834175952015 @default.
- W583417595 countsByYear W5834175952016 @default.
- W583417595 countsByYear W5834175952017 @default.
- W583417595 countsByYear W5834175952018 @default.
- W583417595 countsByYear W5834175952019 @default.
- W583417595 countsByYear W5834175952020 @default.
- W583417595 countsByYear W5834175952021 @default.
- W583417595 countsByYear W5834175952022 @default.
- W583417595 countsByYear W5834175952023 @default.
- W583417595 crossrefType "book" @default.
- W583417595 hasAuthorship W583417595A5029139156 @default.
- W583417595 hasConcept C121332964 @default.
- W583417595 hasConcept C171250308 @default.
- W583417595 hasConcept C192562407 @default.
- W583417595 hasConcept C87355193 @default.
- W583417595 hasConceptScore W583417595C121332964 @default.
- W583417595 hasConceptScore W583417595C171250308 @default.
- W583417595 hasConceptScore W583417595C192562407 @default.
- W583417595 hasConceptScore W583417595C87355193 @default.