Matches in SemOpenAlex for { <https://semopenalex.org/work/W587376096> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W587376096 abstract "The thesis describes new results for several problems in random graph theory. The first problem relates to the uniform random graph model in the supercritical phase; i.e. a graph, uniformly distributed, on n vertices and M = n/2 + s edges for s = s(n) satisfying n = o(s) and s = o(n). The property studied is the length of the longest cycle in the graph. We give a new upper bound, which holds asymptotically almost surely, on this length. As part of our proof we establish a result about the heaviest cycle in a certain randomly-edge-weighted nearly-3-regular graph, which may be of independent interest. Our second result is a new contiguity result for a random d-regular graph. Let j = j(n) be a function that is linear in n. A (d, d − 1)-irregular graph is a graph which is d-regular except for 2j vertices of degree d − 1. A j-edge matching in a graph is a set of j independent edges. In this thesis we prove the new result that a random (d, d−1)-irregular graph plus a random j-edge matching is contiguous to a random d-regular graph, in the sense that in the two spaces, the same events have probability approaching 1 as n→∞. This allows one to deduce properties, such as colourability, of the random irregular graph from the corresponding properties of the random regular one. The proof applies the small subgraph conditioning method to the number of j-edge matchings in a random d-regular graph. The third problem is about the 3-colourability of a random 5-regular graph. Call a colouring balanced if the number of vertices of each colour is equal, and locally rainbow if every vertex is adjacent to vertices of all the other colours. Using the small subgraph conditioning method, we give a condition on the variance of the number of locally rainbow balanced 3-colourings which, if satisfied, establishes that the chromatic number of the random 5-regular graph is asymptotically almost surely equal to 3. We also describe related work which provides evidence that the condition is likely to be true. The fourth problem is about the chromatic number of a random d-regular graph for fixed d. Achlioptas and Moore recently announced a proof that a random dregular graph asymptotically almost surely has chromatic number k − 1, k, or k + 1, where k is the smallest integer satisfying d < 2(k − 1) log(k − 1). In this thesis we prove that, asymptotically almost surely, it is not k+1, provided a certain second moment condition holds. The proof applies the small subgraph conditioning method to the number of balanced k-colourings, where a colouring is balanced if the number of vertices of each colour is equal. We also give evidence that suggests that the required second moment condition is true." @default.
- W587376096 created "2016-06-24" @default.
- W587376096 creator A5037513427 @default.
- W587376096 date "2008-09-23" @default.
- W587376096 modified "2023-09-23" @default.
- W587376096 title "Properties of random graphs" @default.
- W587376096 cites W108214179 @default.
- W587376096 cites W1488435683 @default.
- W587376096 cites W1525926546 @default.
- W587376096 cites W1550173909 @default.
- W587376096 cites W1592213313 @default.
- W587376096 cites W1977033885 @default.
- W587376096 cites W2001735302 @default.
- W587376096 cites W2006544720 @default.
- W587376096 cites W2022956475 @default.
- W587376096 cites W2031672602 @default.
- W587376096 cites W2036312115 @default.
- W587376096 cites W2040419749 @default.
- W587376096 cites W2045472305 @default.
- W587376096 cites W2052603920 @default.
- W587376096 cites W2078550108 @default.
- W587376096 cites W2084832642 @default.
- W587376096 cites W2091476183 @default.
- W587376096 cites W2098487101 @default.
- W587376096 cites W2100057426 @default.
- W587376096 cites W2120371581 @default.
- W587376096 cites W2136219960 @default.
- W587376096 cites W2136227650 @default.
- W587376096 cites W2149745907 @default.
- W587376096 cites W2164437357 @default.
- W587376096 cites W2165387581 @default.
- W587376096 cites W2167266655 @default.
- W587376096 cites W2170706425 @default.
- W587376096 cites W2905110430 @default.
- W587376096 cites W3144881883 @default.
- W587376096 cites W82672431 @default.
- W587376096 hasPublicationYear "2008" @default.
- W587376096 type Work @default.
- W587376096 sameAs 587376096 @default.
- W587376096 citedByCount "1" @default.
- W587376096 crossrefType "dissertation" @default.
- W587376096 hasAuthorship W587376096A5037513427 @default.
- W587376096 hasConcept C100500283 @default.
- W587376096 hasConcept C102192266 @default.
- W587376096 hasConcept C114614502 @default.
- W587376096 hasConcept C118615104 @default.
- W587376096 hasConcept C123482549 @default.
- W587376096 hasConcept C128115575 @default.
- W587376096 hasConcept C132525143 @default.
- W587376096 hasConcept C168291704 @default.
- W587376096 hasConcept C203776342 @default.
- W587376096 hasConcept C22149727 @default.
- W587376096 hasConcept C33923547 @default.
- W587376096 hasConcept C36038622 @default.
- W587376096 hasConcept C4255713 @default.
- W587376096 hasConcept C47458327 @default.
- W587376096 hasConcept C56783289 @default.
- W587376096 hasConceptScore W587376096C100500283 @default.
- W587376096 hasConceptScore W587376096C102192266 @default.
- W587376096 hasConceptScore W587376096C114614502 @default.
- W587376096 hasConceptScore W587376096C118615104 @default.
- W587376096 hasConceptScore W587376096C123482549 @default.
- W587376096 hasConceptScore W587376096C128115575 @default.
- W587376096 hasConceptScore W587376096C132525143 @default.
- W587376096 hasConceptScore W587376096C168291704 @default.
- W587376096 hasConceptScore W587376096C203776342 @default.
- W587376096 hasConceptScore W587376096C22149727 @default.
- W587376096 hasConceptScore W587376096C33923547 @default.
- W587376096 hasConceptScore W587376096C36038622 @default.
- W587376096 hasConceptScore W587376096C4255713 @default.
- W587376096 hasConceptScore W587376096C47458327 @default.
- W587376096 hasConceptScore W587376096C56783289 @default.
- W587376096 hasLocation W5873760961 @default.
- W587376096 hasOpenAccess W587376096 @default.
- W587376096 hasPrimaryLocation W5873760961 @default.
- W587376096 hasRelatedWork W1127021946 @default.
- W587376096 hasRelatedWork W1416896190 @default.
- W587376096 hasRelatedWork W1595315604 @default.
- W587376096 hasRelatedWork W2029690202 @default.
- W587376096 hasRelatedWork W2087936090 @default.
- W587376096 hasRelatedWork W2091203438 @default.
- W587376096 hasRelatedWork W2093205069 @default.
- W587376096 hasRelatedWork W2164669128 @default.
- W587376096 hasRelatedWork W2184943365 @default.
- W587376096 hasRelatedWork W2508266804 @default.
- W587376096 hasRelatedWork W2948446523 @default.
- W587376096 hasRelatedWork W2954618204 @default.
- W587376096 hasRelatedWork W2966726882 @default.
- W587376096 hasRelatedWork W3081681234 @default.
- W587376096 hasRelatedWork W3101661621 @default.
- W587376096 hasRelatedWork W3175737004 @default.
- W587376096 hasRelatedWork W2927048391 @default.
- W587376096 hasRelatedWork W2937213834 @default.
- W587376096 hasRelatedWork W2940764454 @default.
- W587376096 hasRelatedWork W2943530533 @default.
- W587376096 isParatext "false" @default.
- W587376096 isRetracted "false" @default.
- W587376096 magId "587376096" @default.
- W587376096 workType "dissertation" @default.