Matches in SemOpenAlex for { <https://semopenalex.org/work/W589797787> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W589797787 abstract "Contrast enhancement is essential to improve the image quality in most of image pre-processing. A histogram equalization process can be used to achieve a high contrast. It causes, however, also noise generation. Involving a low-pass filtering process is an effective way to achieve a high-quality contrast enhancement with low-noise, but it leads to the conflict between noise removal and signal preservation. To perform discriminative low-pass filtering operations with the presence of noises and signal variations in different regions, it is thus necessary to develop good algorithms to classify the pixels. In this thesis, two classification algorithms are proposed. They aim at low-contrast images where gradient signals are severely degraded by various causes during the acquisition process. They are to classify the pixels according to the initial gray-level homogeneity of their regions. The basic classification method is done by gradient thresholding, and the threshold values are generated by means of gradient distribution analysis. To tackle the problems of various gradient degradation patterns in low-contrast images, image pixels are grouped in a particular way that, in the same group, pixels in homogeneous regions can be easily distinguished from those in non-homogeneous regions by the basic method of simple gradient thresholding. Two algorithms based on different grouping methods are proposed. The first algorithm aims at high dynamic range images. The pixels are first grouped according to their gray-level ranges, as the gradient degradation is, in such a case, gray-level-dependent. The gradient distribution of each sub-range is obtained and a pixel classification is then made to adapt to their original gray-level signals in the sub-range. The other algorithm is to tackle a wider range of low-contrast images. In this algorithm, a gray-level histogram thresholding is performed to divide the pixels into two groups according to their likelihood to homogeneous, or non-homogeneous, pixels. Thus, in one group a majority of homogeneous pixels is established and in the other group the majority is of non-homogeneous pixels. The classification done in each group is to identify those in the minority. Both proposed algorithms are very simple in computation and each of them is incorporated into the contrast enhancement procedure to make the integrated low-pass filters effectively remove the noise generated in the histogram equalization while well preserving the signal details. The simulation results demonstrates, by subjective observation and objective measurements, that the proposed algorithms lead to a superior quality of the contrast enhancement for varieties of images, with respect to two advanced enhancement schemes." @default.
- W589797787 created "2016-06-24" @default.
- W589797787 creator A5008057526 @default.
- W589797787 date "2013-12-13" @default.
- W589797787 modified "2023-09-26" @default.
- W589797787 title "Pixel Classification Algorithms for Noise Removal and Signal Preservation in Low Pass Filtering" @default.
- W589797787 hasPublicationYear "2013" @default.
- W589797787 type Work @default.
- W589797787 sameAs 589797787 @default.
- W589797787 citedByCount "0" @default.
- W589797787 crossrefType "dissertation" @default.
- W589797787 hasAuthorship W589797787A5008057526 @default.
- W589797787 hasConcept C11413529 @default.
- W589797787 hasConcept C115961682 @default.
- W589797787 hasConcept C153180895 @default.
- W589797787 hasConcept C154945302 @default.
- W589797787 hasConcept C160633673 @default.
- W589797787 hasConcept C191178318 @default.
- W589797787 hasConcept C193828747 @default.
- W589797787 hasConcept C2776502983 @default.
- W589797787 hasConcept C31972630 @default.
- W589797787 hasConcept C33923547 @default.
- W589797787 hasConcept C41008148 @default.
- W589797787 hasConcept C53533937 @default.
- W589797787 hasConcept C9417928 @default.
- W589797787 hasConcept C96133863 @default.
- W589797787 hasConcept C99498987 @default.
- W589797787 hasConceptScore W589797787C11413529 @default.
- W589797787 hasConceptScore W589797787C115961682 @default.
- W589797787 hasConceptScore W589797787C153180895 @default.
- W589797787 hasConceptScore W589797787C154945302 @default.
- W589797787 hasConceptScore W589797787C160633673 @default.
- W589797787 hasConceptScore W589797787C191178318 @default.
- W589797787 hasConceptScore W589797787C193828747 @default.
- W589797787 hasConceptScore W589797787C2776502983 @default.
- W589797787 hasConceptScore W589797787C31972630 @default.
- W589797787 hasConceptScore W589797787C33923547 @default.
- W589797787 hasConceptScore W589797787C41008148 @default.
- W589797787 hasConceptScore W589797787C53533937 @default.
- W589797787 hasConceptScore W589797787C9417928 @default.
- W589797787 hasConceptScore W589797787C96133863 @default.
- W589797787 hasConceptScore W589797787C99498987 @default.
- W589797787 hasLocation W5897977871 @default.
- W589797787 hasOpenAccess W589797787 @default.
- W589797787 hasPrimaryLocation W5897977871 @default.
- W589797787 hasRelatedWork W1591294253 @default.
- W589797787 hasRelatedWork W1971942172 @default.
- W589797787 hasRelatedWork W2007327647 @default.
- W589797787 hasRelatedWork W2027583053 @default.
- W589797787 hasRelatedWork W2028646530 @default.
- W589797787 hasRelatedWork W2049960960 @default.
- W589797787 hasRelatedWork W2138508764 @default.
- W589797787 hasRelatedWork W2184350889 @default.
- W589797787 hasRelatedWork W2185775437 @default.
- W589797787 hasRelatedWork W2206951450 @default.
- W589797787 hasRelatedWork W2364219667 @default.
- W589797787 hasRelatedWork W2393506760 @default.
- W589797787 hasRelatedWork W2589208131 @default.
- W589797787 hasRelatedWork W2898718265 @default.
- W589797787 hasRelatedWork W2913213678 @default.
- W589797787 hasRelatedWork W3004012530 @default.
- W589797787 hasRelatedWork W3135939789 @default.
- W589797787 hasRelatedWork W50593512 @default.
- W589797787 hasRelatedWork W2926988463 @default.
- W589797787 hasRelatedWork W3003108845 @default.
- W589797787 isParatext "false" @default.
- W589797787 isRetracted "false" @default.
- W589797787 magId "589797787" @default.
- W589797787 workType "dissertation" @default.