Matches in SemOpenAlex for { <https://semopenalex.org/work/W594046757> ?p ?o ?g. }
- W594046757 endingPage "647" @default.
- W594046757 startingPage "641" @default.
- W594046757 abstract "High dimensional nearest neighbor search is a fundamental problem and has found applications in many domains. Although many hashing based approaches have been proposed for approximate nearest neighbor search in high dimensional space, one main drawback is that they often return many false positives that need to be filtered out by a post procedure. We propose a novel method to address this limitation in this paper. The key idea is to introduce a filtering procedure within the search algorithm, based on the compressed sensing theory, that effectively removes the false positive answers. We first obtain a sparse representation for each data point by the landmark based approach, after which we solve the nearly duplicate search that the difference between the query and its nearest neighbors forms a sparse vector living in a small ℓp ball, where p ≤ 1. Our empirical study on real-world datasets demonstrates the effectiveness of the proposed approach compared to thestate-of-the-art hashing methods." @default.
- W594046757 created "2016-06-24" @default.
- W594046757 creator A5032164035 @default.
- W594046757 creator A5037942269 @default.
- W594046757 creator A5069394608 @default.
- W594046757 creator A5089722002 @default.
- W594046757 date "2021-09-20" @default.
- W594046757 modified "2023-09-22" @default.
- W594046757 title "Random Projection with Filtering for Nearly Duplicate Search" @default.
- W594046757 cites W1500351990 @default.
- W594046757 cites W1502916507 @default.
- W594046757 cites W1562412850 @default.
- W594046757 cites W1569265273 @default.
- W594046757 cites W1817442886 @default.
- W594046757 cites W1835419070 @default.
- W594046757 cites W1941181464 @default.
- W594046757 cites W1982410540 @default.
- W594046757 cites W1989291446 @default.
- W594046757 cites W2007273639 @default.
- W594046757 cites W2012833704 @default.
- W594046757 cites W2019336343 @default.
- W594046757 cites W2024199467 @default.
- W594046757 cites W2038276547 @default.
- W594046757 cites W2050749090 @default.
- W594046757 cites W2051549110 @default.
- W594046757 cites W2055839530 @default.
- W594046757 cites W2066799613 @default.
- W594046757 cites W2082029531 @default.
- W594046757 cites W2099253838 @default.
- W594046757 cites W2121713321 @default.
- W594046757 cites W2125378448 @default.
- W594046757 cites W2129131372 @default.
- W594046757 cites W2144892774 @default.
- W594046757 cites W2145096794 @default.
- W594046757 cites W2149623757 @default.
- W594046757 cites W2154153158 @default.
- W594046757 cites W2157092487 @default.
- W594046757 cites W2157465536 @default.
- W594046757 cites W2158169729 @default.
- W594046757 cites W2162006472 @default.
- W594046757 cites W2164338181 @default.
- W594046757 cites W2170037597 @default.
- W594046757 cites W2171790913 @default.
- W594046757 cites W2221852422 @default.
- W594046757 cites W2286850569 @default.
- W594046757 cites W2293597654 @default.
- W594046757 cites W2296616510 @default.
- W594046757 cites W2911840696 @default.
- W594046757 cites W2913932916 @default.
- W594046757 cites W2979473749 @default.
- W594046757 cites W3097609957 @default.
- W594046757 cites W2067771944 @default.
- W594046757 doi "https://doi.org/10.1609/aaai.v26i1.8199" @default.
- W594046757 hasPublicationYear "2021" @default.
- W594046757 type Work @default.
- W594046757 sameAs 594046757 @default.
- W594046757 citedByCount "3" @default.
- W594046757 countsByYear W5940467572013 @default.
- W594046757 countsByYear W5940467572014 @default.
- W594046757 countsByYear W5940467572015 @default.
- W594046757 crossrefType "journal-article" @default.
- W594046757 hasAuthorship W594046757A5032164035 @default.
- W594046757 hasAuthorship W594046757A5037942269 @default.
- W594046757 hasAuthorship W594046757A5069394608 @default.
- W594046757 hasAuthorship W594046757A5089722002 @default.
- W594046757 hasBestOaLocation W5940467571 @default.
- W594046757 hasConcept C113238511 @default.
- W594046757 hasConcept C11413529 @default.
- W594046757 hasConcept C116738811 @default.
- W594046757 hasConcept C124101348 @default.
- W594046757 hasConcept C153180895 @default.
- W594046757 hasConcept C154945302 @default.
- W594046757 hasConcept C161986146 @default.
- W594046757 hasConcept C2777036070 @default.
- W594046757 hasConcept C38652104 @default.
- W594046757 hasConcept C41008148 @default.
- W594046757 hasConcept C64869954 @default.
- W594046757 hasConcept C67388219 @default.
- W594046757 hasConcept C74270461 @default.
- W594046757 hasConcept C99138194 @default.
- W594046757 hasConceptScore W594046757C113238511 @default.
- W594046757 hasConceptScore W594046757C11413529 @default.
- W594046757 hasConceptScore W594046757C116738811 @default.
- W594046757 hasConceptScore W594046757C124101348 @default.
- W594046757 hasConceptScore W594046757C153180895 @default.
- W594046757 hasConceptScore W594046757C154945302 @default.
- W594046757 hasConceptScore W594046757C161986146 @default.
- W594046757 hasConceptScore W594046757C2777036070 @default.
- W594046757 hasConceptScore W594046757C38652104 @default.
- W594046757 hasConceptScore W594046757C41008148 @default.
- W594046757 hasConceptScore W594046757C64869954 @default.
- W594046757 hasConceptScore W594046757C67388219 @default.
- W594046757 hasConceptScore W594046757C74270461 @default.
- W594046757 hasConceptScore W594046757C99138194 @default.
- W594046757 hasIssue "1" @default.
- W594046757 hasLocation W5940467571 @default.
- W594046757 hasOpenAccess W594046757 @default.
- W594046757 hasPrimaryLocation W5940467571 @default.