Matches in SemOpenAlex for { <https://semopenalex.org/work/W59499401> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W59499401 endingPage "540" @default.
- W59499401 startingPage "517" @default.
- W59499401 abstract "Canonical discriminant analysis (CDA) and linear discriminant analysis (LDA) are popular classification techniques. Likewise, practitioners, who are familiar with regularized discriminant analysis (RDA), soft modeling by class analogy (SIMCA), principal component analysis (PCA), and partial least squares (PLS) will often use them to perform classification. In this chapter, we will attempt to make some sense out of all of this. We will explain when CDA and LDA are the same and when they are not the same. We will also discuss the relative merits of the various stabilization and dimension reducing methods used, focusing on RDA for numerical stabilization of the inverse of the covariance matrix and PCA and PLS as part of a two-step process for classification when dimensionality reduction is an issue." @default.
- W59499401 created "2016-06-24" @default.
- W59499401 creator A5001139092 @default.
- W59499401 creator A5048381564 @default.
- W59499401 date "2009-01-01" @default.
- W59499401 modified "2023-10-14" @default.
- W59499401 title "Statistical Discriminant Analysis" @default.
- W59499401 cites W1983417063 @default.
- W59499401 cites W1992541609 @default.
- W59499401 cites W2001619934 @default.
- W59499401 cites W2001673444 @default.
- W59499401 cites W2005051528 @default.
- W59499401 cites W2018519139 @default.
- W59499401 cites W2036279918 @default.
- W59499401 cites W2041327510 @default.
- W59499401 cites W2063145959 @default.
- W59499401 cites W2080458549 @default.
- W59499401 cites W2084109879 @default.
- W59499401 cites W2111523288 @default.
- W59499401 cites W2145277930 @default.
- W59499401 cites W2164583936 @default.
- W59499401 doi "https://doi.org/10.1016/b978-044452701-1.00024-7" @default.
- W59499401 hasPublicationYear "2009" @default.
- W59499401 type Work @default.
- W59499401 sameAs 59499401 @default.
- W59499401 citedByCount "5" @default.
- W59499401 countsByYear W594994012013 @default.
- W59499401 countsByYear W594994012014 @default.
- W59499401 countsByYear W594994012022 @default.
- W59499401 crossrefType "book-chapter" @default.
- W59499401 hasAuthorship W59499401A5001139092 @default.
- W59499401 hasAuthorship W59499401A5048381564 @default.
- W59499401 hasConcept C104500394 @default.
- W59499401 hasConcept C105795698 @default.
- W59499401 hasConcept C153180895 @default.
- W59499401 hasConcept C154945302 @default.
- W59499401 hasConcept C33923547 @default.
- W59499401 hasConcept C41008148 @default.
- W59499401 hasConcept C69738355 @default.
- W59499401 hasConcept C78397625 @default.
- W59499401 hasConceptScore W59499401C104500394 @default.
- W59499401 hasConceptScore W59499401C105795698 @default.
- W59499401 hasConceptScore W59499401C153180895 @default.
- W59499401 hasConceptScore W59499401C154945302 @default.
- W59499401 hasConceptScore W59499401C33923547 @default.
- W59499401 hasConceptScore W59499401C41008148 @default.
- W59499401 hasConceptScore W59499401C69738355 @default.
- W59499401 hasConceptScore W59499401C78397625 @default.
- W59499401 hasLocation W594994011 @default.
- W59499401 hasOpenAccess W59499401 @default.
- W59499401 hasPrimaryLocation W594994011 @default.
- W59499401 hasRelatedWork W1530636965 @default.
- W59499401 hasRelatedWork W1984472287 @default.
- W59499401 hasRelatedWork W1996980404 @default.
- W59499401 hasRelatedWork W2044228987 @default.
- W59499401 hasRelatedWork W2113920489 @default.
- W59499401 hasRelatedWork W2128307858 @default.
- W59499401 hasRelatedWork W2134569917 @default.
- W59499401 hasRelatedWork W2146076056 @default.
- W59499401 hasRelatedWork W2379730211 @default.
- W59499401 hasRelatedWork W3147024994 @default.
- W59499401 isParatext "false" @default.
- W59499401 isRetracted "false" @default.
- W59499401 magId "59499401" @default.
- W59499401 workType "book-chapter" @default.