Matches in SemOpenAlex for { <https://semopenalex.org/work/W59592858> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W59592858 endingPage "157" @default.
- W59592858 startingPage "154" @default.
- W59592858 abstract "Abstract Selecting good feature is especially important to achieve high speech recognition accuracy. Although the mel-cepstrum is a popular and effective feature for speech recognition, it is still unclear that the filter-bank in the mel-cepstrum is always optimal regardless of speech recognition environments or the characteristics of specific speech data. In this paper, we focus on the data-driven filter-bank optimization for a new feature extraction where we use the Kullback-Leibler (KL) distance as the measure in the filter-bank design. Experimental results showed that the proposed feature provides an error rate reduction of about 20% for clean speech as well as noisy speech compared to the conventional mel-cepstral feature. 1. Introduction Speech recognition is mainly composed of feature extraction and classification. Of the two parts, feature extraction aims at not only preserving necessary information to distinguish the proper phonetic class from the categorized phonetic ones but also alleviating irrelevant redundancies such as speaker variability, channel variability, or environmental noise [1], [2]. These roles of feature extraction make selection of feature especially important to achieve high recognition accuracy. Currently, most speech recognizers utilize the mel-cepstrum as their input feature because of its predominant attractiveness in speech recognition accuracy as well as noise immunity. The mel-cepstrum is based on the properties of speech production and speech perception, which are reflected by cepstral analysis and the critical band-based filter-bank analysis respectively [3], [4]. Therefore, one of the basic ideas of the mel-cepstrum is to reflect the human auditory perception mechanism on the feature for speech recognition. The relatively superior effectiveness of the mel-cepstral feature to other features is well known from numerous experimental results [3]. Nevertheless, it is still unclear that the filter-bank in the mel-cepstrum is always optimal in the sense of information preservation or speech recognition accuracy regardless of speech recognition environments or the characteristic of speech database for developing a speech recognizer for a specific application domain. This is due to the fact that the mel-scaled filter-bank is mainly based on the results from empirical researches on the human auditory perception [4]. Thus, there are always some needs to make new approaches in the sense of maximizing the preservation of information driven from real speech data in the feature extraction. As a part of solving these topics, several research activities have been conducted to optimize the filter-bank of the mel-cepstrum [1], [2] and [5]. Our work, as another approach to this research area, focuses on the filter-bank optimization for a new feature extraction for the given speech data environments. Here, we use an optimization criterion derived from the information theory-based entropic distance measure in the process of filter-bank design. This paper organized as follows. Section 2 describes the overall algorithmic procedure used for designing the optimized filter-bank for the newly proposed feature extraction. Section 3 presents experimental results for evaluating the performance of the proposed feature extraction method. Conclusion is finally given in Section 4." @default.
- W59592858 created "2016-06-24" @default.
- W59592858 creator A5033502618 @default.
- W59592858 creator A5066573438 @default.
- W59592858 date "2004-09-01" @default.
- W59592858 modified "2023-09-25" @default.
- W59592858 title "Data-Driven Filter-Bank-based Feature Extraction for Speech Recognition" @default.
- W59592858 cites W1493163583 @default.
- W59592858 cites W1992314141 @default.
- W59592858 cites W2069501481 @default.
- W59592858 cites W2120294472 @default.
- W59592858 cites W2130728696 @default.
- W59592858 cites W2148154194 @default.
- W59592858 cites W88864901 @default.
- W59592858 hasPublicationYear "2004" @default.
- W59592858 type Work @default.
- W59592858 sameAs 59592858 @default.
- W59592858 citedByCount "2" @default.
- W59592858 countsByYear W595928582012 @default.
- W59592858 crossrefType "journal-article" @default.
- W59592858 hasAuthorship W59592858A5033502618 @default.
- W59592858 hasAuthorship W59592858A5066573438 @default.
- W59592858 hasConcept C100515483 @default.
- W59592858 hasConcept C106131492 @default.
- W59592858 hasConcept C133892786 @default.
- W59592858 hasConcept C138885662 @default.
- W59592858 hasConcept C151989614 @default.
- W59592858 hasConcept C153180895 @default.
- W59592858 hasConcept C154945302 @default.
- W59592858 hasConcept C2776401178 @default.
- W59592858 hasConcept C28490314 @default.
- W59592858 hasConcept C31972630 @default.
- W59592858 hasConcept C41008148 @default.
- W59592858 hasConcept C41895202 @default.
- W59592858 hasConcept C52622490 @default.
- W59592858 hasConcept C61328038 @default.
- W59592858 hasConcept C88485024 @default.
- W59592858 hasConceptScore W59592858C100515483 @default.
- W59592858 hasConceptScore W59592858C106131492 @default.
- W59592858 hasConceptScore W59592858C133892786 @default.
- W59592858 hasConceptScore W59592858C138885662 @default.
- W59592858 hasConceptScore W59592858C151989614 @default.
- W59592858 hasConceptScore W59592858C153180895 @default.
- W59592858 hasConceptScore W59592858C154945302 @default.
- W59592858 hasConceptScore W59592858C2776401178 @default.
- W59592858 hasConceptScore W59592858C28490314 @default.
- W59592858 hasConceptScore W59592858C31972630 @default.
- W59592858 hasConceptScore W59592858C41008148 @default.
- W59592858 hasConceptScore W59592858C41895202 @default.
- W59592858 hasConceptScore W59592858C52622490 @default.
- W59592858 hasConceptScore W59592858C61328038 @default.
- W59592858 hasConceptScore W59592858C88485024 @default.
- W59592858 hasLocation W595928581 @default.
- W59592858 hasOpenAccess W59592858 @default.
- W59592858 hasPrimaryLocation W595928581 @default.
- W59592858 hasRelatedWork W111398552 @default.
- W59592858 hasRelatedWork W2159199187 @default.
- W59592858 hasRelatedWork W2171675276 @default.
- W59592858 hasRelatedWork W2439843937 @default.
- W59592858 hasRelatedWork W2774921310 @default.
- W59592858 hasRelatedWork W2784311631 @default.
- W59592858 hasRelatedWork W2791590904 @default.
- W59592858 hasRelatedWork W2791927058 @default.
- W59592858 hasRelatedWork W2849777211 @default.
- W59592858 hasRelatedWork W2900593471 @default.
- W59592858 hasRelatedWork W2900771622 @default.
- W59592858 hasRelatedWork W2900915105 @default.
- W59592858 hasRelatedWork W2946075412 @default.
- W59592858 hasRelatedWork W2980788180 @default.
- W59592858 hasRelatedWork W3034535039 @default.
- W59592858 hasRelatedWork W3118580112 @default.
- W59592858 hasRelatedWork W3125547504 @default.
- W59592858 hasRelatedWork W3184620678 @default.
- W59592858 hasRelatedWork W2286031153 @default.
- W59592858 hasRelatedWork W2863349341 @default.
- W59592858 isParatext "false" @default.
- W59592858 isRetracted "false" @default.
- W59592858 magId "59592858" @default.
- W59592858 workType "article" @default.