Matches in SemOpenAlex for { <https://semopenalex.org/work/W59595801> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W59595801 abstract "The research described in this dissertation has proposed a human-centered retrieval framework that can automatically retrieve multimedia data based on their semantic content. In particular, the framework queries and searches images and videos in a multimedia database according to their visual content. In order for computers to understand the semantic contents of images and videos, human guidance is necessary. By incorporating the user's Relevance Feedback (RF) on the retrieval results into the learning and retrieval mechanism, the semantic gap between humans and computers can be gradually bridged. High-dimensional feature vectors of multimedia data can cause a dramatic increase in computation time. This is known as the Curse of Dimensionality. To alleviate this problem, clustering algorithms are designed to reduce the search space for retrieval and thus reduce the time complexity. In addition, in order to facilitate the query and retrieval of video data, a multimedia database model is designed according to the spatiotemporal nature of video data.The proposed framework in this research is composed of three major components–Interactive Content-based Image Retrieval (CBIR), Video Retrieval, and Spatiotemporal Multimedia Database Model.The Interactive CBIR component successfully maps the region-based image retrieval problem to a Multiple Instance Learning (MIL) problem. A distance-based clustering algorithm and a semantic-based clustering algorithm are designed to reduce the search space. This component supports both short term and long term learning. The Video Retrieval component emphasizes the study of spatiotemporal characteristics and relations among semantic objects in videos. Traffic incidents in transportation surveillance videos and abnormal human interactions in indoor surveillance videos are used as case studies. The proposed work designs and implements a semantic event retrieval system for intelligent surveillance systems. The technique of RF plays a key role in the retrieval process. Various spatiotemporal event models and learning mechanisms are designed and tested. In addition, since the application for surveillance video database retrieval is a focus of interest in this research, an efficient conceptual Spatiotemporal Multimedia Database model is designed to facilitate the query of user-interested spatiotemporal events. A case study on the proposed database model is provided using transportation surveillance videos.In brief, the human-centered multimedia retrieval system proposed in this research focuses on alleviating the above-mentioned two problems–the Semantic Gap and the Curse of Dimensionality. The Interactive Region-based Image Retrieval component and the Video Retrieval component both explore the use of RF in the learning and retrieval phase to solve the problem of Semantic Gap. These two components also integrate RF with MIL to ease the burden of users in providing feedback on the retrieval results. To alleviate the Curse of Dimensionality problem, semantic clustering algorithms are designed and implemented which consider both the low-level features of multimedia data and the high-level human perceptions. In order to facilitate the query and retrieval, a spatiotemporal multimedia database model is proposed to provide an efficient indexing scheme.The experimental results for each individual component are presented. Comparisons with related work are conducted, showing the effectiveness of the proposed framework." @default.
- W59595801 created "2016-06-24" @default.
- W59595801 creator A5019295590 @default.
- W59595801 creator A5061568662 @default.
- W59595801 date "2008-01-01" @default.
- W59595801 modified "2023-09-24" @default.
- W59595801 title "Human-centered semantic retrieval in multimedia databases" @default.
- W59595801 hasPublicationYear "2008" @default.
- W59595801 type Work @default.
- W59595801 sameAs 59595801 @default.
- W59595801 citedByCount "0" @default.
- W59595801 crossrefType "journal-article" @default.
- W59595801 hasAuthorship W59595801A5019295590 @default.
- W59595801 hasAuthorship W59595801A5061568662 @default.
- W59595801 hasConcept C115961682 @default.
- W59595801 hasConcept C121332964 @default.
- W59595801 hasConcept C154945302 @default.
- W59595801 hasConcept C158154518 @default.
- W59595801 hasConcept C1667742 @default.
- W59595801 hasConcept C168167062 @default.
- W59595801 hasConcept C17744445 @default.
- W59595801 hasConcept C189391414 @default.
- W59595801 hasConcept C199539241 @default.
- W59595801 hasConcept C23123220 @default.
- W59595801 hasConcept C2776318140 @default.
- W59595801 hasConcept C2779061030 @default.
- W59595801 hasConcept C2779532271 @default.
- W59595801 hasConcept C2780052074 @default.
- W59595801 hasConcept C41008148 @default.
- W59595801 hasConcept C73555534 @default.
- W59595801 hasConcept C86034646 @default.
- W59595801 hasConcept C97355855 @default.
- W59595801 hasConceptScore W59595801C115961682 @default.
- W59595801 hasConceptScore W59595801C121332964 @default.
- W59595801 hasConceptScore W59595801C154945302 @default.
- W59595801 hasConceptScore W59595801C158154518 @default.
- W59595801 hasConceptScore W59595801C1667742 @default.
- W59595801 hasConceptScore W59595801C168167062 @default.
- W59595801 hasConceptScore W59595801C17744445 @default.
- W59595801 hasConceptScore W59595801C189391414 @default.
- W59595801 hasConceptScore W59595801C199539241 @default.
- W59595801 hasConceptScore W59595801C23123220 @default.
- W59595801 hasConceptScore W59595801C2776318140 @default.
- W59595801 hasConceptScore W59595801C2779061030 @default.
- W59595801 hasConceptScore W59595801C2779532271 @default.
- W59595801 hasConceptScore W59595801C2780052074 @default.
- W59595801 hasConceptScore W59595801C41008148 @default.
- W59595801 hasConceptScore W59595801C73555534 @default.
- W59595801 hasConceptScore W59595801C86034646 @default.
- W59595801 hasConceptScore W59595801C97355855 @default.
- W59595801 hasLocation W595958011 @default.
- W59595801 hasOpenAccess W59595801 @default.
- W59595801 hasPrimaryLocation W595958011 @default.
- W59595801 hasRelatedWork W11283474 @default.
- W59595801 hasRelatedWork W1549833617 @default.
- W59595801 hasRelatedWork W1978226222 @default.
- W59595801 hasRelatedWork W2035250823 @default.
- W59595801 hasRelatedWork W208670487 @default.
- W59595801 hasRelatedWork W2135394405 @default.
- W59595801 hasRelatedWork W2253345706 @default.
- W59595801 hasRelatedWork W2477748077 @default.
- W59595801 hasRelatedWork W2594615161 @default.
- W59595801 hasRelatedWork W2595461065 @default.
- W59595801 hasRelatedWork W2743665963 @default.
- W59595801 hasRelatedWork W2752421834 @default.
- W59595801 hasRelatedWork W2785592111 @default.
- W59595801 hasRelatedWork W2902885956 @default.
- W59595801 hasRelatedWork W3032965624 @default.
- W59595801 hasRelatedWork W3139420363 @default.
- W59595801 hasRelatedWork W3139848828 @default.
- W59595801 hasRelatedWork W3144798594 @default.
- W59595801 hasRelatedWork W2249286312 @default.
- W59595801 hasRelatedWork W2628805976 @default.
- W59595801 isParatext "false" @default.
- W59595801 isRetracted "false" @default.
- W59595801 magId "59595801" @default.
- W59595801 workType "article" @default.