Matches in SemOpenAlex for { <https://semopenalex.org/work/W59627278> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W59627278 abstract "The Trojan asteroids have been highlighted as a main target for future discovery missions, which will enable key questions about the formation of our Solar system to be answered. Programs like the Japanese Jupiter and Trojan Asteroids Exploration Programme are already testing technology demonstrators like the IKAROS spacecraft to enable future interplanetary missions to Jupiter and the Trojans. In this paper an analytic analysis of the stability of the Low thrust Sun Jupiter Asteroid Spacecraft system, is presented, from a Hamiltonian point of view. Setting the three primaries in the stable Lagrangian equilateral triangle configuration, eight natural (i.e. with zero thrust) equilibrium points are identified, four of which are close to the asteroid, two stable and two unstable, when considering as primaries the Sun and any other two bodies of the Solar System. Artificial equilibria, which can be seen as low thrust perturbations of the natural ones, are then taken into account with the aim of identifying their linearly stable subset. The Lyapunov stability of these marginally stable points is then analysed using basic KAM (Kolmogorov Arnold Moser) theory and Arnold’s stability theorem. In order to apply such theorem an iterative procedure to reduce the Hamiltonian into Birkhoff’s Normal Form is applied up to fourth order, explicitly defining, at each step, the generating function of a symplectic transformation. Despite the complexity of this process, Normal Forms are a fundamental, necessary step for any application of KAM theory; such theory, transforming a non-integrable system into a sum of perturbed integrable ones, enables the computation of a high order analytical approximation of the system dynamics, plus an estimation of the discrepancy from the initial model. As an application of KAM theory, a proof of the nonlinear stability for the low thrust generated equilibrium points under non resonant conditions is found using Arnold’s stability theorem. Results show that Lyapunov stability is guaranteed along the linearly stable domain with the exception of a set of points with zero measure where the conditions to apply Arnold‘s theorem are not satisfied." @default.
- W59627278 created "2016-06-24" @default.
- W59627278 creator A5004925950 @default.
- W59627278 creator A5042325731 @default.
- W59627278 date "2011-10-03" @default.
- W59627278 modified "2023-09-25" @default.
- W59627278 title "Nonlinearly stable equilibria in the Sun-Jupiter-Trojan-Spacecraft four body problem" @default.
- W59627278 hasPublicationYear "2011" @default.
- W59627278 type Work @default.
- W59627278 sameAs 59627278 @default.
- W59627278 citedByCount "0" @default.
- W59627278 crossrefType "journal-article" @default.
- W59627278 hasAuthorship W59627278A5004925950 @default.
- W59627278 hasAuthorship W59627278A5042325731 @default.
- W59627278 hasConcept C108411613 @default.
- W59627278 hasConcept C115260700 @default.
- W59627278 hasConcept C121332964 @default.
- W59627278 hasConcept C121770821 @default.
- W59627278 hasConcept C126255220 @default.
- W59627278 hasConcept C1276947 @default.
- W59627278 hasConcept C130787639 @default.
- W59627278 hasConcept C140619461 @default.
- W59627278 hasConcept C158622935 @default.
- W59627278 hasConcept C174333608 @default.
- W59627278 hasConcept C194462397 @default.
- W59627278 hasConcept C200741047 @default.
- W59627278 hasConcept C22268893 @default.
- W59627278 hasConcept C27638517 @default.
- W59627278 hasConcept C29829512 @default.
- W59627278 hasConcept C33923547 @default.
- W59627278 hasConcept C37914503 @default.
- W59627278 hasConcept C539450922 @default.
- W59627278 hasConcept C58142911 @default.
- W59627278 hasConcept C60640748 @default.
- W59627278 hasConcept C62520636 @default.
- W59627278 hasConcept C74650414 @default.
- W59627278 hasConcept C8522634 @default.
- W59627278 hasConcept C88417058 @default.
- W59627278 hasConceptScore W59627278C108411613 @default.
- W59627278 hasConceptScore W59627278C115260700 @default.
- W59627278 hasConceptScore W59627278C121332964 @default.
- W59627278 hasConceptScore W59627278C121770821 @default.
- W59627278 hasConceptScore W59627278C126255220 @default.
- W59627278 hasConceptScore W59627278C1276947 @default.
- W59627278 hasConceptScore W59627278C130787639 @default.
- W59627278 hasConceptScore W59627278C140619461 @default.
- W59627278 hasConceptScore W59627278C158622935 @default.
- W59627278 hasConceptScore W59627278C174333608 @default.
- W59627278 hasConceptScore W59627278C194462397 @default.
- W59627278 hasConceptScore W59627278C200741047 @default.
- W59627278 hasConceptScore W59627278C22268893 @default.
- W59627278 hasConceptScore W59627278C27638517 @default.
- W59627278 hasConceptScore W59627278C29829512 @default.
- W59627278 hasConceptScore W59627278C33923547 @default.
- W59627278 hasConceptScore W59627278C37914503 @default.
- W59627278 hasConceptScore W59627278C539450922 @default.
- W59627278 hasConceptScore W59627278C58142911 @default.
- W59627278 hasConceptScore W59627278C60640748 @default.
- W59627278 hasConceptScore W59627278C62520636 @default.
- W59627278 hasConceptScore W59627278C74650414 @default.
- W59627278 hasConceptScore W59627278C8522634 @default.
- W59627278 hasConceptScore W59627278C88417058 @default.
- W59627278 hasLocation W596272781 @default.
- W59627278 hasOpenAccess W59627278 @default.
- W59627278 hasPrimaryLocation W596272781 @default.
- W59627278 hasRelatedWork W1485995423 @default.
- W59627278 hasRelatedWork W1617965196 @default.
- W59627278 hasRelatedWork W1647999069 @default.
- W59627278 hasRelatedWork W1989107981 @default.
- W59627278 hasRelatedWork W1994595396 @default.
- W59627278 hasRelatedWork W2005532637 @default.
- W59627278 hasRelatedWork W2017513548 @default.
- W59627278 hasRelatedWork W2040241268 @default.
- W59627278 hasRelatedWork W2049972859 @default.
- W59627278 hasRelatedWork W2057772831 @default.
- W59627278 hasRelatedWork W2101873477 @default.
- W59627278 hasRelatedWork W2335692606 @default.
- W59627278 hasRelatedWork W2587394753 @default.
- W59627278 hasRelatedWork W2607357844 @default.
- W59627278 hasRelatedWork W2610663116 @default.
- W59627278 hasRelatedWork W2776794729 @default.
- W59627278 hasRelatedWork W2794166423 @default.
- W59627278 hasRelatedWork W3152093480 @default.
- W59627278 hasRelatedWork W3205179001 @default.
- W59627278 hasRelatedWork W71450538 @default.
- W59627278 isParatext "false" @default.
- W59627278 isRetracted "false" @default.
- W59627278 magId "59627278" @default.
- W59627278 workType "article" @default.