Matches in SemOpenAlex for { <https://semopenalex.org/work/W59651707> ?p ?o ?g. }
- W59651707 abstract "In this dissertation, an Expectation-Maximization (EM) algorithm is developed and implemented to obtain maximum likelihood estimates of the parameters and the associated standard error estimates characterizing temporal flows for the latent variable time series following stationary vector ARMA processes, as well as the parameters defining the relationship between the latent stochastic vector and the observed scores taking measurement errors into account. Such models have been known as Process Factor Analysis (PFA) models (Browne & Nesselroade, 2005). In the E-step, the complete-data expected log-likelihood, the so-called Q-function, which is the joint likelihood of the manifest variables and the latent time series process variables, is constructed by supposing the latent process variables are observed. In the M-step, the Newton-Raphson algorithm is employed in order to update the parameter estimates. The closed form expressions for the gradient vector and the Hessian matrix of the target function are derived for implementing the M-step of the EM algorithm. Methods for obtaining the associated standard error estimates are developed and implemented. The proposed EM algorithm employs the covariance structure derived by du Toit and Browne (2007) where the influence of the time series prior to the first observation has remained stable and unchanged when the first observations are made. Thus, unlike other conventional structural equation modeling (SEM) software, model implied covariance matrices satisfy the stability condition and are Block-Toeplitz matrices. The proposed algorithm is applied to simulated data in order to ascertain its viability. Specifically, the recovery of the population parameter values of the proposed EM algorithm is studied with simulated data, which is generated so as to follow a PFA model. The performance of the developing method for standard error estimation is evaluated in the simulation study. The results of the simulation study show that the proposed methods for obtaining parameter estimates and the associated standard error estimates for PFA models can be effectively employed both to single-subject time-series analysis and to repeated time-series analysis. Remaining methodological issues for future research are discussed." @default.
- W59651707 created "2016-06-24" @default.
- W59651707 creator A5012423737 @default.
- W59651707 creator A5070835674 @default.
- W59651707 date "2010-01-01" @default.
- W59651707 modified "2023-09-24" @default.
- W59651707 title "An em algorithm for maximum likelihood estimation of process factor analysis models" @default.
- W59651707 cites W106079701 @default.
- W59651707 cites W143399821 @default.
- W59651707 cites W1506602547 @default.
- W59651707 cites W1550443206 @default.
- W59651707 cites W1964579284 @default.
- W59651707 cites W1967573895 @default.
- W59651707 cites W1978894823 @default.
- W59651707 cites W1992193527 @default.
- W59651707 cites W1997181404 @default.
- W59651707 cites W1998487261 @default.
- W59651707 cites W2001674862 @default.
- W59651707 cites W2008414835 @default.
- W59651707 cites W2014602125 @default.
- W59651707 cites W2017218474 @default.
- W59651707 cites W2017966270 @default.
- W59651707 cites W2026738983 @default.
- W59651707 cites W2029761439 @default.
- W59651707 cites W2030741364 @default.
- W59651707 cites W2031273971 @default.
- W59651707 cites W2031588620 @default.
- W59651707 cites W2041094138 @default.
- W59651707 cites W2049633694 @default.
- W59651707 cites W2050937055 @default.
- W59651707 cites W2066306397 @default.
- W59651707 cites W2074680741 @default.
- W59651707 cites W2076818396 @default.
- W59651707 cites W2079953459 @default.
- W59651707 cites W2087332020 @default.
- W59651707 cites W2089189865 @default.
- W59651707 cites W2100473319 @default.
- W59651707 cites W2122759946 @default.
- W59651707 cites W2130416410 @default.
- W59651707 cites W2161326254 @default.
- W59651707 cites W2162438032 @default.
- W59651707 cites W2164085284 @default.
- W59651707 cites W2166475545 @default.
- W59651707 cites W2178225550 @default.
- W59651707 cites W2182448498 @default.
- W59651707 cites W2486260537 @default.
- W59651707 cites W2487963267 @default.
- W59651707 cites W2798056406 @default.
- W59651707 cites W2961565984 @default.
- W59651707 cites W3179023023 @default.
- W59651707 cites W338441042 @default.
- W59651707 cites W2072634211 @default.
- W59651707 hasPublicationYear "2010" @default.
- W59651707 type Work @default.
- W59651707 sameAs 59651707 @default.
- W59651707 citedByCount "0" @default.
- W59651707 crossrefType "book-chapter" @default.
- W59651707 hasAuthorship W59651707A5012423737 @default.
- W59651707 hasAuthorship W59651707A5070835674 @default.
- W59651707 hasConcept C105795698 @default.
- W59651707 hasConcept C11413529 @default.
- W59651707 hasConcept C126255220 @default.
- W59651707 hasConcept C143724316 @default.
- W59651707 hasConcept C151730666 @default.
- W59651707 hasConcept C167928553 @default.
- W59651707 hasConcept C178650346 @default.
- W59651707 hasConcept C182081679 @default.
- W59651707 hasConcept C185142706 @default.
- W59651707 hasConcept C203616005 @default.
- W59651707 hasConcept C28826006 @default.
- W59651707 hasConcept C33923547 @default.
- W59651707 hasConcept C49781872 @default.
- W59651707 hasConcept C51167844 @default.
- W59651707 hasConcept C65965080 @default.
- W59651707 hasConcept C86803240 @default.
- W59651707 hasConcept C89106044 @default.
- W59651707 hasConceptScore W59651707C105795698 @default.
- W59651707 hasConceptScore W59651707C11413529 @default.
- W59651707 hasConceptScore W59651707C126255220 @default.
- W59651707 hasConceptScore W59651707C143724316 @default.
- W59651707 hasConceptScore W59651707C151730666 @default.
- W59651707 hasConceptScore W59651707C167928553 @default.
- W59651707 hasConceptScore W59651707C178650346 @default.
- W59651707 hasConceptScore W59651707C182081679 @default.
- W59651707 hasConceptScore W59651707C185142706 @default.
- W59651707 hasConceptScore W59651707C203616005 @default.
- W59651707 hasConceptScore W59651707C28826006 @default.
- W59651707 hasConceptScore W59651707C33923547 @default.
- W59651707 hasConceptScore W59651707C49781872 @default.
- W59651707 hasConceptScore W59651707C51167844 @default.
- W59651707 hasConceptScore W59651707C65965080 @default.
- W59651707 hasConceptScore W59651707C86803240 @default.
- W59651707 hasConceptScore W59651707C89106044 @default.
- W59651707 hasLocation W596517071 @default.
- W59651707 hasOpenAccess W59651707 @default.
- W59651707 hasPrimaryLocation W596517071 @default.
- W59651707 hasRelatedWork W147269479 @default.
- W59651707 hasRelatedWork W157958861 @default.
- W59651707 hasRelatedWork W1856530109 @default.
- W59651707 hasRelatedWork W1974688411 @default.