Matches in SemOpenAlex for { <https://semopenalex.org/work/W597021812> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W597021812 abstract "This thesis consists of five papers, presented in chronological order. Their content is summarised in this section.Paper I introduces the approximation tool for latent GMRF models and discusses, in particular, the approximation for the posterior of the hyperparameters θ in equation (1). It is shown that this approximation is indeed very accurate, as even long MCMC runs cannot detect any error in it. A Gaussian approximation to the density of χi|θ, y is also discussed. This appears to give reasonable results and it is very fast to compute. However, slight errors are detected when comparing the approximation with long MCMC runs. These are mostly due to the fact that a possible - skewed density is approximated via a symmetric one. Paper I presents also some details about sparse matrices algorithms.The core of the thesis is presented in Paper II. Here most of the remaining issues present in Paper I are solved. Three different approximation for χi|θ, y with different degrees of accuracy and computational costs are described. Moreover, ways to assess the approximation error and considerations about the asymptotical behaviour of the approximations are also discussed. Through a series of examples covering a wide range of commonly used latent GMRF models, the approximations are shown to give extremely accurate results in a fraction of the computing time used by MCMC algorithms.Paper III applies the same ideas as Paper II to generalised linear mixed models where χ represents a latent variable at n spatial sites on a two dimensional domain. Out of these n sites k, with n >> k , are observed through data. The n sites are assumed to be on a regular grid and wrapped on a torus. For the class of models described in Paper III the computations are based on discrete Fourier transform instead of sparse matrices. Paper III illustrates also how marginal likelihood π (y) can be approximated, provides approximate strategies for Bayesian outlier detection and perform approximate evaluation of spatial experimental design.Paper IV presents yet another application of the ideas in Paper II. Here approximate techniques are used to do inference on multivariate stochastic volatility models, a class of models widely used in financial applications. Paper IV discusses also problems deriving from the increased dimension of the parameter vector θ, a condition which makes all numerical integration more computationally intensive. Different approximations for the posterior marginals of the parameters θ, π(θi)|y), are also introduced. Approximations to the marginal likelihood π(y) are used in order to perform model comparison.Finally, Paper V is a manual for a program, named inla which implements all approximations described in Paper II. A large series of worked out examples, covering many well known models, illustrate the use and the performance of the inla program. This program is a valuable instrument since it makes most of the Bayesian inference techniques described in this thesis easily available for everyone." @default.
- W597021812 created "2016-06-24" @default.
- W597021812 creator A5021334435 @default.
- W597021812 date "2008-01-01" @default.
- W597021812 modified "2023-09-27" @default.
- W597021812 title "Approximate Bayesian Inference for Multivariate Stochastic Volatility Models" @default.
- W597021812 hasPublicationYear "2008" @default.
- W597021812 type Work @default.
- W597021812 sameAs 597021812 @default.
- W597021812 citedByCount "2" @default.
- W597021812 countsByYear W5970218122015 @default.
- W597021812 crossrefType "journal-article" @default.
- W597021812 hasAuthorship W597021812A5021334435 @default.
- W597021812 hasConcept C105795698 @default.
- W597021812 hasConcept C107673813 @default.
- W597021812 hasConcept C111350023 @default.
- W597021812 hasConcept C11413529 @default.
- W597021812 hasConcept C121332964 @default.
- W597021812 hasConcept C149782125 @default.
- W597021812 hasConcept C154945302 @default.
- W597021812 hasConcept C158622935 @default.
- W597021812 hasConcept C160234255 @default.
- W597021812 hasConcept C160824197 @default.
- W597021812 hasConcept C163716315 @default.
- W597021812 hasConcept C2776214188 @default.
- W597021812 hasConcept C28826006 @default.
- W597021812 hasConcept C33923547 @default.
- W597021812 hasConcept C41008148 @default.
- W597021812 hasConcept C51167844 @default.
- W597021812 hasConcept C62520636 @default.
- W597021812 hasConcept C85393063 @default.
- W597021812 hasConcept C8642999 @default.
- W597021812 hasConcept C91602232 @default.
- W597021812 hasConceptScore W597021812C105795698 @default.
- W597021812 hasConceptScore W597021812C107673813 @default.
- W597021812 hasConceptScore W597021812C111350023 @default.
- W597021812 hasConceptScore W597021812C11413529 @default.
- W597021812 hasConceptScore W597021812C121332964 @default.
- W597021812 hasConceptScore W597021812C149782125 @default.
- W597021812 hasConceptScore W597021812C154945302 @default.
- W597021812 hasConceptScore W597021812C158622935 @default.
- W597021812 hasConceptScore W597021812C160234255 @default.
- W597021812 hasConceptScore W597021812C160824197 @default.
- W597021812 hasConceptScore W597021812C163716315 @default.
- W597021812 hasConceptScore W597021812C2776214188 @default.
- W597021812 hasConceptScore W597021812C28826006 @default.
- W597021812 hasConceptScore W597021812C33923547 @default.
- W597021812 hasConceptScore W597021812C41008148 @default.
- W597021812 hasConceptScore W597021812C51167844 @default.
- W597021812 hasConceptScore W597021812C62520636 @default.
- W597021812 hasConceptScore W597021812C85393063 @default.
- W597021812 hasConceptScore W597021812C8642999 @default.
- W597021812 hasConceptScore W597021812C91602232 @default.
- W597021812 hasLocation W5970218121 @default.
- W597021812 hasOpenAccess W597021812 @default.
- W597021812 hasPrimaryLocation W5970218121 @default.
- W597021812 hasRelatedWork W1528239639 @default.
- W597021812 hasRelatedWork W1555547010 @default.
- W597021812 hasRelatedWork W1920004557 @default.
- W597021812 hasRelatedWork W2005630497 @default.
- W597021812 hasRelatedWork W2115979064 @default.
- W597021812 hasRelatedWork W2152657433 @default.
- W597021812 hasRelatedWork W2162072343 @default.
- W597021812 hasRelatedWork W2181356457 @default.
- W597021812 hasRelatedWork W2396665160 @default.
- W597021812 hasRelatedWork W2435627247 @default.
- W597021812 hasRelatedWork W2469113648 @default.
- W597021812 hasRelatedWork W2524816426 @default.
- W597021812 hasRelatedWork W2555699918 @default.
- W597021812 hasRelatedWork W2623582864 @default.
- W597021812 hasRelatedWork W2904254030 @default.
- W597021812 hasRelatedWork W2950399127 @default.
- W597021812 hasRelatedWork W2953330410 @default.
- W597021812 hasRelatedWork W2972597983 @default.
- W597021812 hasRelatedWork W3016582770 @default.
- W597021812 hasRelatedWork W3019385773 @default.
- W597021812 isParatext "false" @default.
- W597021812 isRetracted "false" @default.
- W597021812 magId "597021812" @default.
- W597021812 workType "article" @default.