Matches in SemOpenAlex for { <https://semopenalex.org/work/W59702904> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W59702904 abstract "In recent years, a number of works proposing the combination of multiple classifiers to produce a single classification have been reported. The resulting classifier, referred to as an ensemble classifier, is generally found to be more accurate than any of the individual classifiers making up the ensemble. In an ensemble of classifiers, it is hoped that each individual classifier will focus on different aspects of the data and error under different circumstances. By combining a set of so-called base classifiers, the deficiencies of each classifier may be compensated by the efficiency of the others. Ensemble pruning deals with the reduction of an ensemble of predictive models in order to improve its efficiency and performance. Ensemble pruning can be considered as an optimization problem. In our work we propose the use of Harmony search, a music inspired algorithm to prune and select the best combination of classifiers. The work is compared with AdaBoost and Bagging among other popular ensemble methods and our method is shown to perform better than the other methods. We have also compared our work with an ensemble pruning technique based on genetic algorithm and our model has shown better accuracy." @default.
- W59702904 created "2016-06-24" @default.
- W59702904 creator A5015609009 @default.
- W59702904 creator A5020608168 @default.
- W59702904 creator A5038259155 @default.
- W59702904 creator A5046955287 @default.
- W59702904 creator A5085819376 @default.
- W59702904 date "2012-01-01" @default.
- W59702904 modified "2023-09-27" @default.
- W59702904 title "Ensemble Pruning Using Harmony Search" @default.
- W59702904 cites W1577983635 @default.
- W59702904 cites W1590261618 @default.
- W59702904 cites W1979910324 @default.
- W59702904 cites W1980264541 @default.
- W59702904 cites W1985334587 @default.
- W59702904 cites W1993885071 @default.
- W59702904 cites W2021236931 @default.
- W59702904 cites W2091171277 @default.
- W59702904 cites W2113242816 @default.
- W59702904 cites W2133990480 @default.
- W59702904 cites W2150757437 @default.
- W59702904 cites W2487087946 @default.
- W59702904 cites W28412257 @default.
- W59702904 cites W3152294918 @default.
- W59702904 doi "https://doi.org/10.1007/978-3-642-28931-6_2" @default.
- W59702904 hasPublicationYear "2012" @default.
- W59702904 type Work @default.
- W59702904 sameAs 59702904 @default.
- W59702904 citedByCount "1" @default.
- W59702904 countsByYear W597029042014 @default.
- W59702904 crossrefType "book-chapter" @default.
- W59702904 hasAuthorship W59702904A5015609009 @default.
- W59702904 hasAuthorship W59702904A5020608168 @default.
- W59702904 hasAuthorship W59702904A5038259155 @default.
- W59702904 hasAuthorship W59702904A5046955287 @default.
- W59702904 hasAuthorship W59702904A5085819376 @default.
- W59702904 hasConcept C106135958 @default.
- W59702904 hasConcept C119857082 @default.
- W59702904 hasConcept C141404830 @default.
- W59702904 hasConcept C153180895 @default.
- W59702904 hasConcept C154945302 @default.
- W59702904 hasConcept C33099171 @default.
- W59702904 hasConcept C40651066 @default.
- W59702904 hasConcept C41008148 @default.
- W59702904 hasConcept C45942800 @default.
- W59702904 hasConcept C95623464 @default.
- W59702904 hasConceptScore W59702904C106135958 @default.
- W59702904 hasConceptScore W59702904C119857082 @default.
- W59702904 hasConceptScore W59702904C141404830 @default.
- W59702904 hasConceptScore W59702904C153180895 @default.
- W59702904 hasConceptScore W59702904C154945302 @default.
- W59702904 hasConceptScore W59702904C33099171 @default.
- W59702904 hasConceptScore W59702904C40651066 @default.
- W59702904 hasConceptScore W59702904C41008148 @default.
- W59702904 hasConceptScore W59702904C45942800 @default.
- W59702904 hasConceptScore W59702904C95623464 @default.
- W59702904 hasLocation W597029041 @default.
- W59702904 hasOpenAccess W59702904 @default.
- W59702904 hasPrimaryLocation W597029041 @default.
- W59702904 hasRelatedWork W1539453830 @default.
- W59702904 hasRelatedWork W194158874 @default.
- W59702904 hasRelatedWork W1969754734 @default.
- W59702904 hasRelatedWork W2014560520 @default.
- W59702904 hasRelatedWork W2043908141 @default.
- W59702904 hasRelatedWork W2058162228 @default.
- W59702904 hasRelatedWork W2067630776 @default.
- W59702904 hasRelatedWork W2112548098 @default.
- W59702904 hasRelatedWork W2170375089 @default.
- W59702904 hasRelatedWork W2273278181 @default.
- W59702904 hasRelatedWork W2290694504 @default.
- W59702904 hasRelatedWork W2304288935 @default.
- W59702904 hasRelatedWork W2583112160 @default.
- W59702904 hasRelatedWork W2593914038 @default.
- W59702904 hasRelatedWork W2634831866 @default.
- W59702904 hasRelatedWork W2754745137 @default.
- W59702904 hasRelatedWork W3006236014 @default.
- W59702904 hasRelatedWork W3090343122 @default.
- W59702904 hasRelatedWork W3210776264 @default.
- W59702904 hasRelatedWork W2735060186 @default.
- W59702904 isParatext "false" @default.
- W59702904 isRetracted "false" @default.
- W59702904 magId "59702904" @default.
- W59702904 workType "book-chapter" @default.