Matches in SemOpenAlex for { <https://semopenalex.org/work/W59791712> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W59791712 abstract "High dimensional data presents a challenge to the classification problem because of the difficulty in modeling the precise relationship between the large number of feature variables and the class variable. In such cases, it may be desirable to reduce the information to a small number of dimensions in order to improve the accuracy and effectiveness of the classification process. While data reduction has been a well studied problem for the unsupervised domain, the technique has not been explored quite as extensively for the supervised case. Existing techniques which try to perform dimensionality reduction are too slow for practical use in the high dimensional case. These techniques try to find global discriminants in the data. However, the behavior of the data often varies considerably with data locality and different subspaces may show better discrimination in different localities. This is an even more challenging task than the global discrimination problem because of the additional issue of data localization. In this paper, we propose the novel idea of supervised subspace sampling in order to create a reduced representation of the data for classification applications in an efficient and effective way. The method exploits the natural distribution of the different classes in order to sample the best subspaces for class discrimination. Because of its sampling approach, the procedure is extremely fast and scales almost linearly both with data set size and dimensionality." @default.
- W59791712 created "2016-06-24" @default.
- W59791712 creator A5028089542 @default.
- W59791712 date "2006-04-20" @default.
- W59791712 modified "2023-09-25" @default.
- W59791712 title "A Framework for Local Supervised Dimensionality Reduction of High Dimensional Data" @default.
- W59791712 cites W1484413656 @default.
- W59791712 cites W1499117135 @default.
- W59791712 cites W1504694836 @default.
- W59791712 cites W1506285740 @default.
- W59791712 cites W2003552078 @default.
- W59791712 cites W2084481683 @default.
- W59791712 cites W2112210867 @default.
- W59791712 cites W2124993430 @default.
- W59791712 cites W2137772040 @default.
- W59791712 cites W2147717514 @default.
- W59791712 cites W2167081989 @default.
- W59791712 cites W2912934387 @default.
- W59791712 cites W3017143921 @default.
- W59791712 cites W3099514962 @default.
- W59791712 cites W3126588943 @default.
- W59791712 doi "https://doi.org/10.1137/1.9781611972764.32" @default.
- W59791712 hasPublicationYear "2006" @default.
- W59791712 type Work @default.
- W59791712 sameAs 59791712 @default.
- W59791712 citedByCount "2" @default.
- W59791712 countsByYear W597917122014 @default.
- W59791712 crossrefType "proceedings-article" @default.
- W59791712 hasAuthorship W59791712A5028089542 @default.
- W59791712 hasBestOaLocation W597917122 @default.
- W59791712 hasConcept C106131492 @default.
- W59791712 hasConcept C111030470 @default.
- W59791712 hasConcept C111335779 @default.
- W59791712 hasConcept C119857082 @default.
- W59791712 hasConcept C12362212 @default.
- W59791712 hasConcept C124101348 @default.
- W59791712 hasConcept C138885662 @default.
- W59791712 hasConcept C140779682 @default.
- W59791712 hasConcept C153180895 @default.
- W59791712 hasConcept C154945302 @default.
- W59791712 hasConcept C2524010 @default.
- W59791712 hasConcept C2779808786 @default.
- W59791712 hasConcept C31972630 @default.
- W59791712 hasConcept C32834561 @default.
- W59791712 hasConcept C33923547 @default.
- W59791712 hasConcept C41008148 @default.
- W59791712 hasConcept C41895202 @default.
- W59791712 hasConcept C58489278 @default.
- W59791712 hasConcept C70518039 @default.
- W59791712 hasConceptScore W59791712C106131492 @default.
- W59791712 hasConceptScore W59791712C111030470 @default.
- W59791712 hasConceptScore W59791712C111335779 @default.
- W59791712 hasConceptScore W59791712C119857082 @default.
- W59791712 hasConceptScore W59791712C12362212 @default.
- W59791712 hasConceptScore W59791712C124101348 @default.
- W59791712 hasConceptScore W59791712C138885662 @default.
- W59791712 hasConceptScore W59791712C140779682 @default.
- W59791712 hasConceptScore W59791712C153180895 @default.
- W59791712 hasConceptScore W59791712C154945302 @default.
- W59791712 hasConceptScore W59791712C2524010 @default.
- W59791712 hasConceptScore W59791712C2779808786 @default.
- W59791712 hasConceptScore W59791712C31972630 @default.
- W59791712 hasConceptScore W59791712C32834561 @default.
- W59791712 hasConceptScore W59791712C33923547 @default.
- W59791712 hasConceptScore W59791712C41008148 @default.
- W59791712 hasConceptScore W59791712C41895202 @default.
- W59791712 hasConceptScore W59791712C58489278 @default.
- W59791712 hasConceptScore W59791712C70518039 @default.
- W59791712 hasLocation W597917121 @default.
- W59791712 hasLocation W597917122 @default.
- W59791712 hasOpenAccess W59791712 @default.
- W59791712 hasPrimaryLocation W597917121 @default.
- W59791712 hasRelatedWork W2020265014 @default.
- W59791712 hasRelatedWork W202122401 @default.
- W59791712 hasRelatedWork W2124267089 @default.
- W59791712 hasRelatedWork W2132788060 @default.
- W59791712 hasRelatedWork W2278775421 @default.
- W59791712 hasRelatedWork W2432389449 @default.
- W59791712 hasRelatedWork W2771038650 @default.
- W59791712 hasRelatedWork W2963654369 @default.
- W59791712 hasRelatedWork W3017161237 @default.
- W59791712 hasRelatedWork W3137422635 @default.
- W59791712 isParatext "false" @default.
- W59791712 isRetracted "false" @default.
- W59791712 magId "59791712" @default.
- W59791712 workType "article" @default.