Matches in SemOpenAlex for { <https://semopenalex.org/work/W598604468> ?p ?o ?g. }
- W598604468 abstract "This thesis makes a number of new contributions to control and sensing for unmanned vehicles. I begin by developing a non-linear simulation of a small unmanned helicopter and then proceed to develop new algorithms for control and sensing using the simulation. The work is field-tested in successful flight trials of biologically inspired vision and neural network control for an unstable rotorcraft. The techniques are more robust and more easily implemented on a small flying vehicle than previously attempted methods. Experiments from biology suggest that the sensing of image motion or optic flow in insects provides a means of determining the range to obstacles and terrain. This biologically inspired approach is applied to control of height in a helicopter, leading to the World’s first optic flow based terrain following controller for an unmanned helicopter in forward flight. Another novel optic flow based controller is developed for the control of velocity in hover. Using the measurements of height from other sensors, optic flow is used to provide a measure of the helicopters lateral and longitudinal velocities relative to the ground plane. Feedback of these velocity measurements enables automated hover with a drift of only a few cm per second, which is sufficient to allow a helicopter to land autonomously in gusty conditions with no absolute measurement of position. New techniques for sensor fusion using Extended Kalman Filtering are developed to estimate attitude and velocity from noisy inertial sensors and optic flow measurements. However, such control and sensor fusion techniques can be computationally intensive, rendering them difficult or impossible to implement on a small unmanned vehicle due to limitations on computing resources. Since neural networks can perform these functions with minimal computing hardware, a new technique of control using neural networks is presented. First a hybrid plant model consisting of exactly known dynamics is combined with a black-box representation of the unknown dynamics. Simulated trajectories are then calculated for the plant using an optimal controller. Finally, a neural network is trained to mimic the optimal controller. Flight test results of control of the heave dynamics of a helicopter confirm the neural network controller’s ability to operate in high disturbance conditions and suggest that the neural network outperforms a PD controller. Sensor fusion and control of the lateral and longitudinal dynamics of the helicopter are also shown to be easily achieved using computationally modest neural networks." @default.
- W598604468 created "2016-06-24" @default.
- W598604468 creator A5064811459 @default.
- W598604468 date "2007-10-01" @default.
- W598604468 modified "2023-09-30" @default.
- W598604468 title "Biologically Inspired Vision and Control for an Autonomous Flying Vehicle" @default.
- W598604468 cites W1483282947 @default.
- W598604468 cites W1489626042 @default.
- W598604468 cites W1497004693 @default.
- W598604468 cites W1524247284 @default.
- W598604468 cites W1551574008 @default.
- W598604468 cites W1559856396 @default.
- W598604468 cites W1601974704 @default.
- W598604468 cites W1626388799 @default.
- W598604468 cites W1648906858 @default.
- W598604468 cites W1757054643 @default.
- W598604468 cites W1936519662 @default.
- W598604468 cites W1938879368 @default.
- W598604468 cites W1949804828 @default.
- W598604468 cites W1958991208 @default.
- W598604468 cites W1964715412 @default.
- W598604468 cites W1969108015 @default.
- W598604468 cites W1975073146 @default.
- W598604468 cites W1988574817 @default.
- W598604468 cites W1989728025 @default.
- W598604468 cites W2009727770 @default.
- W598604468 cites W2012685872 @default.
- W598604468 cites W2013256164 @default.
- W598604468 cites W2017694161 @default.
- W598604468 cites W2026487592 @default.
- W598604468 cites W2028840816 @default.
- W598604468 cites W2035772266 @default.
- W598604468 cites W2037539475 @default.
- W598604468 cites W2038107162 @default.
- W598604468 cites W2044987129 @default.
- W598604468 cites W2050843542 @default.
- W598604468 cites W2052539226 @default.
- W598604468 cites W2054807159 @default.
- W598604468 cites W2060960306 @default.
- W598604468 cites W2066505667 @default.
- W598604468 cites W2071069134 @default.
- W598604468 cites W2074798463 @default.
- W598604468 cites W2075611125 @default.
- W598604468 cites W2075757194 @default.
- W598604468 cites W2075773492 @default.
- W598604468 cites W2082306260 @default.
- W598604468 cites W2085080157 @default.
- W598604468 cites W2094281765 @default.
- W598604468 cites W2097467365 @default.
- W598604468 cites W2101049699 @default.
- W598604468 cites W2103103416 @default.
- W598604468 cites W2105934661 @default.
- W598604468 cites W2106443172 @default.
- W598604468 cites W2107556327 @default.
- W598604468 cites W2107939431 @default.
- W598604468 cites W2108734173 @default.
- W598604468 cites W2109821910 @default.
- W598604468 cites W2110397192 @default.
- W598604468 cites W2113399221 @default.
- W598604468 cites W2115270410 @default.
- W598604468 cites W2115797648 @default.
- W598604468 cites W2115992609 @default.
- W598604468 cites W2116913932 @default.
- W598604468 cites W2117642129 @default.
- W598604468 cites W2118026945 @default.
- W598604468 cites W2120333476 @default.
- W598604468 cites W2121610374 @default.
- W598604468 cites W2124535811 @default.
- W598604468 cites W2127451216 @default.
- W598604468 cites W2128140121 @default.
- W598604468 cites W2130105540 @default.
- W598604468 cites W2130159462 @default.
- W598604468 cites W2132463956 @default.
- W598604468 cites W2133758255 @default.
- W598604468 cites W2137160544 @default.
- W598604468 cites W2137686885 @default.
- W598604468 cites W2139366707 @default.
- W598604468 cites W2139675356 @default.
- W598604468 cites W2140645486 @default.
- W598604468 cites W2142577696 @default.
- W598604468 cites W2144789976 @default.
- W598604468 cites W2146183297 @default.
- W598604468 cites W2146412146 @default.
- W598604468 cites W2146951279 @default.
- W598604468 cites W2154555084 @default.
- W598604468 cites W2155482699 @default.
- W598604468 cites W2156628584 @default.
- W598604468 cites W2158598687 @default.
- W598604468 cites W2160806978 @default.
- W598604468 cites W2163595313 @default.
- W598604468 cites W2164598857 @default.
- W598604468 cites W2164640220 @default.
- W598604468 cites W2165121435 @default.
- W598604468 cites W2315503365 @default.
- W598604468 cites W2324494890 @default.
- W598604468 cites W2396887291 @default.
- W598604468 cites W2543260040 @default.
- W598604468 cites W2911709767 @default.
- W598604468 cites W3003662786 @default.
- W598604468 cites W3142385674 @default.