Matches in SemOpenAlex for { <https://semopenalex.org/work/W599211839> ?p ?o ?g. }
- W599211839 abstract "This dissertation aims to discover synergistic combinations of top-down (ontologies), interactive (relevance feedback), and bottom-up (machine learning) knowledge encoding techniques for text mining. The strength of machine learning techniques lies in their coverage and efficiency because they can discover new knowledge without human intervention. The output, however, is often imprecise and irrelevant. Human knowledge, top-down or interactively encoded, may remedy this. The research question addressed is if knowledge discovery can become more precise and relevant with hybrid systems. Three different combinations are evaluated. The first study investigates an ontology, the Unified Medical Language System (UMLS), combined with an automatically created thesaurus to dynamically adjust the thesaurus' output. The augmented thesaurus was added to a medical, meta-search portal as a keyword suggester and compared with the unmodified thesaurus and UMLS. Users preferred the hybrid approach. Thus, the combination of the ontology with the thesaurus was better than the components separately. The second study investigates implicit relevance feedback combined with genetic algorithms designed to adjust user queries for online searching. These were compared with pure relevance feedback algorithms. Users were divided into groups based on their overall performance. The genetic algorithm significantly helped low achievers, but hindered high achievers. Thus, the interactively elicited knowledge from relevance feedback was judged insufficient to guide machine learning for all users. The final study investigates ontologies combined with two natural language processing techniques: a shallow parser and an automatically created thesaurus. Both capture relations between phrases in biomedical text. Qualified researchers found all terms to be precise; however, terms that belonged to ontologies were more relevant. Parser relations were all precise. Thesaurus relations were less precise, but precision improved for relations that had their terms represented in ontologies. Thus, this integration of ontologies with natural language processing provided good results. In general, it was concluded that top-down encoded knowledge could be effectively integrated with bottom-up encoded knowledge for knowledge discovery in text. This is particularly relevant to business fields, which are text and knowledge intensive. In the future, it will be worthwhile to extend the parser and also to test similar hybrid approaches for data mining." @default.
- W599211839 created "2016-06-24" @default.
- W599211839 creator A5017102020 @default.
- W599211839 creator A5070859841 @default.
- W599211839 date "2003-01-01" @default.
- W599211839 modified "2023-09-24" @default.
- W599211839 title "Facilitating knowledge discovery by integrating bottom-up and top-down knowledge sources: a text mining approach" @default.
- W599211839 cites W1482918155 @default.
- W599211839 cites W1561658683 @default.
- W599211839 cites W1570448133 @default.
- W599211839 cites W1620530708 @default.
- W599211839 cites W1676473731 @default.
- W599211839 cites W1884585804 @default.
- W599211839 cites W1982789924 @default.
- W599211839 cites W2000672666 @default.
- W599211839 cites W2002306339 @default.
- W599211839 cites W2003233718 @default.
- W599211839 cites W2007807439 @default.
- W599211839 cites W2013657661 @default.
- W599211839 cites W2024926021 @default.
- W599211839 cites W2031842395 @default.
- W599211839 cites W2032576893 @default.
- W599211839 cites W2033715651 @default.
- W599211839 cites W2043909051 @default.
- W599211839 cites W2049602207 @default.
- W599211839 cites W2072099238 @default.
- W599211839 cites W2086301041 @default.
- W599211839 cites W2104597806 @default.
- W599211839 cites W2110293626 @default.
- W599211839 cites W2115159360 @default.
- W599211839 cites W2125055259 @default.
- W599211839 cites W2126689277 @default.
- W599211839 cites W2131630280 @default.
- W599211839 cites W2133952083 @default.
- W599211839 cites W2139921367 @default.
- W599211839 cites W2144026429 @default.
- W599211839 cites W2154800598 @default.
- W599211839 cites W2158014992 @default.
- W599211839 cites W2158342005 @default.
- W599211839 cites W2159799774 @default.
- W599211839 cites W2164547069 @default.
- W599211839 cites W2165242406 @default.
- W599211839 cites W2166920054 @default.
- W599211839 hasPublicationYear "2003" @default.
- W599211839 type Work @default.
- W599211839 sameAs 599211839 @default.
- W599211839 citedByCount "0" @default.
- W599211839 crossrefType "journal-article" @default.
- W599211839 hasAuthorship W599211839A5017102020 @default.
- W599211839 hasAuthorship W599211839A5070859841 @default.
- W599211839 hasConcept C111472728 @default.
- W599211839 hasConcept C115961682 @default.
- W599211839 hasConcept C138885662 @default.
- W599211839 hasConcept C154945302 @default.
- W599211839 hasConcept C158154518 @default.
- W599211839 hasConcept C1667742 @default.
- W599211839 hasConcept C17744445 @default.
- W599211839 hasConcept C186644900 @default.
- W599211839 hasConcept C199539241 @default.
- W599211839 hasConcept C204321447 @default.
- W599211839 hasConcept C23123220 @default.
- W599211839 hasConcept C25810664 @default.
- W599211839 hasConcept C2778698081 @default.
- W599211839 hasConcept C2779532271 @default.
- W599211839 hasConcept C41008148 @default.
- W599211839 hasConcept C69505689 @default.
- W599211839 hasConceptScore W599211839C111472728 @default.
- W599211839 hasConceptScore W599211839C115961682 @default.
- W599211839 hasConceptScore W599211839C138885662 @default.
- W599211839 hasConceptScore W599211839C154945302 @default.
- W599211839 hasConceptScore W599211839C158154518 @default.
- W599211839 hasConceptScore W599211839C1667742 @default.
- W599211839 hasConceptScore W599211839C17744445 @default.
- W599211839 hasConceptScore W599211839C186644900 @default.
- W599211839 hasConceptScore W599211839C199539241 @default.
- W599211839 hasConceptScore W599211839C204321447 @default.
- W599211839 hasConceptScore W599211839C23123220 @default.
- W599211839 hasConceptScore W599211839C25810664 @default.
- W599211839 hasConceptScore W599211839C2778698081 @default.
- W599211839 hasConceptScore W599211839C2779532271 @default.
- W599211839 hasConceptScore W599211839C41008148 @default.
- W599211839 hasConceptScore W599211839C69505689 @default.
- W599211839 hasLocation W5992118391 @default.
- W599211839 hasOpenAccess W599211839 @default.
- W599211839 hasPrimaryLocation W5992118391 @default.
- W599211839 hasRelatedWork W1489671131 @default.
- W599211839 hasRelatedWork W1572517894 @default.
- W599211839 hasRelatedWork W206546058 @default.
- W599211839 hasRelatedWork W2186126641 @default.
- W599211839 hasRelatedWork W2188945783 @default.
- W599211839 hasRelatedWork W2276511593 @default.
- W599211839 hasRelatedWork W2293607556 @default.
- W599211839 hasRelatedWork W2314216947 @default.
- W599211839 hasRelatedWork W2384955403 @default.
- W599211839 hasRelatedWork W2394506419 @default.
- W599211839 hasRelatedWork W2495832907 @default.
- W599211839 hasRelatedWork W2981389524 @default.
- W599211839 hasRelatedWork W2994703848 @default.
- W599211839 hasRelatedWork W3005940716 @default.
- W599211839 hasRelatedWork W3033221332 @default.