Matches in SemOpenAlex for { <https://semopenalex.org/work/W605692607> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W605692607 abstract "WINNER OF THE 2007 DEGROOT PRIZE!The prominence of finite mixture modelling is greater than ever. Many important statistical topics like clustering data, outlier treatment, or dealing with unobserved heterogeneity involve finite mixture models in some way or other. The area of potential applications goes beyond simple data analysis and extends to regression analysis and to non-linear time series analysis using Markov switching models.For more than the hundred years since Karl Pearson showed in 1894 how to estimate the five parameters of a mixture of two normal distributions using the method of moments, statistical inference for finite mixture models has been a challenge to everybody who deals with them. In the past ten years, very powerful computational tools emerged for dealing with these models which combine a Bayesian approach with recent Monte simulation techniques based on Markov chains. This book reviews these techniques and covers the most recent advances in the field, among them bridge sampling techniques and reversible jump Markov chain Monte Carlo methods.It is the first time that the Bayesian perspective of finite mixture modelling is systematically presented in book form. It is argued that the Bayesian approach provides much insight in this context and is easily implemented in practice. Although the main focus is on Bayesian inference, the author reviews several frequentist techniques, especially selecting the number of components of a finite mixture model, and discusses some of their shortcomings compared to the Bayesian approach.The aim of this book is to impart the finite mixture and Markov switching approach to statistical modelling to a wide-ranging community. This includes not only statisticians, but also biologists, economists, engineers, financial agents, market researcher, medical researchers or any other frequent user of statistical models. This book should help newcomers to the field to understand how finite mixture and Markov switching models are formulated, what structures they imply on the data, what they could be used for, and how they are estimated. Researchers familiar with the subject also will profit from reading this book. The presentation is rather informal without abandoning mathematical correctness. Previous notions of Bayesian inference and Monte Carlo simulation are useful but not needed." @default.
- W605692607 created "2016-06-24" @default.
- W605692607 creator A5051060321 @default.
- W605692607 date "2006-01-01" @default.
- W605692607 modified "2023-10-14" @default.
- W605692607 title "Finite Mixture and Markov Switching Models" @default.
- W605692607 cites W1573175260 @default.
- W605692607 cites W1834232446 @default.
- W605692607 cites W1856341315 @default.
- W605692607 cites W1978900605 @default.
- W605692607 cites W1994888851 @default.
- W605692607 cites W2015749074 @default.
- W605692607 cites W2027445478 @default.
- W605692607 cites W2048899282 @default.
- W605692607 cites W2053633338 @default.
- W605692607 cites W2054038204 @default.
- W605692607 cites W2074812030 @default.
- W605692607 cites W2087534654 @default.
- W605692607 cites W2096878708 @default.
- W605692607 cites W2098665527 @default.
- W605692607 cites W2122868998 @default.
- W605692607 cites W2124700543 @default.
- W605692607 cites W2131628232 @default.
- W605692607 cites W2166698530 @default.
- W605692607 cites W3125810650 @default.
- W605692607 cites W3148930403 @default.
- W605692607 doi "https://doi.org/10.1007/978-0-387-35768-3" @default.
- W605692607 hasPublicationYear "2006" @default.
- W605692607 type Work @default.
- W605692607 sameAs 605692607 @default.
- W605692607 citedByCount "418" @default.
- W605692607 countsByYear W6056926072012 @default.
- W605692607 countsByYear W6056926072013 @default.
- W605692607 countsByYear W6056926072014 @default.
- W605692607 countsByYear W6056926072015 @default.
- W605692607 countsByYear W6056926072016 @default.
- W605692607 countsByYear W6056926072017 @default.
- W605692607 countsByYear W6056926072018 @default.
- W605692607 countsByYear W6056926072019 @default.
- W605692607 countsByYear W6056926072020 @default.
- W605692607 countsByYear W6056926072021 @default.
- W605692607 countsByYear W6056926072022 @default.
- W605692607 countsByYear W6056926072023 @default.
- W605692607 crossrefType "book" @default.
- W605692607 hasAuthorship W605692607A5051060321 @default.
- W605692607 hasBestOaLocation W6056926071 @default.
- W605692607 hasConcept C105795698 @default.
- W605692607 hasConcept C33923547 @default.
- W605692607 hasConcept C41008148 @default.
- W605692607 hasConcept C98763669 @default.
- W605692607 hasConceptScore W605692607C105795698 @default.
- W605692607 hasConceptScore W605692607C33923547 @default.
- W605692607 hasConceptScore W605692607C41008148 @default.
- W605692607 hasConceptScore W605692607C98763669 @default.
- W605692607 hasLocation W6056926071 @default.
- W605692607 hasOpenAccess W605692607 @default.
- W605692607 hasPrimaryLocation W6056926071 @default.
- W605692607 hasRelatedWork W2043886502 @default.
- W605692607 hasRelatedWork W2113561010 @default.
- W605692607 hasRelatedWork W2312387198 @default.
- W605692607 hasRelatedWork W2325315176 @default.
- W605692607 hasRelatedWork W2357352049 @default.
- W605692607 hasRelatedWork W2389529561 @default.
- W605692607 hasRelatedWork W2908756996 @default.
- W605692607 hasRelatedWork W3003806278 @default.
- W605692607 hasRelatedWork W4243745691 @default.
- W605692607 hasRelatedWork W4313705009 @default.
- W605692607 isParatext "false" @default.
- W605692607 isRetracted "false" @default.
- W605692607 magId "605692607" @default.
- W605692607 workType "book" @default.