Matches in SemOpenAlex for { <https://semopenalex.org/work/W60695964> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W60695964 abstract "In order to be concrete we focus on estimation of the treatment specific mean, controlling for all measured baseline covariates, based on observing n independent and identically distributed copies of a random variable consisting of baseline covariates, a subsequently assigned binary treatment, and a final outcome. The statistical model only assumes possible restrictions on the conditional distribution of treatment, given the covariates, the so called propensity score. Estimators of the treatment specific mean involve estimation of the propensity score and/or estimation of the conditional mean of the outcome, given the treatment and covariates. In order to make these estimators asymptotically unbiased at any data distribution in the statistical model, it is essential to use data adaptive estimators of these nuisance parameters such as ensemble learning, and specifically super-learning. Because such estimators involve optimal trade-off of bias and variance w.r.t. the infinite dimensional nuisance parameter itself, they result in a sub-optimal bias/variance trade-off for the resulting real valued estimator of the estimand. We demonstrate that additional targeting of the estimators of these nuisance parameters guarantees that this bias for the estimand is second order, and thereby allows us to prove theorems thatestablish asymptotic linearity of the estimator of the treatment specific mean under regularity conditions. These insights result in novel targeted maximum likelihood estimators (TMLE) that use ensemble learning withadditional targeted bias reduction to construct estimators of the nuisance parameters. In particular, we construct collaborative targeted maximum likelihood estimators (CTMLE) with known influence curve allowing for statistical inference, even though these CTMLEs involve variable selection for the propensity score based on a criterion that measures how effective the resulting fit of the propensity score is in removing bias for the estimand. As a particular special case, we also demonstrate the required targeting of the propensity score for the inverse probability of treatment weighted estimator using super-learning to fit the propensity score." @default.
- W60695964 created "2016-06-24" @default.
- W60695964 creator A5038659463 @default.
- W60695964 creator A5052387898 @default.
- W60695964 date "2012-01-01" @default.
- W60695964 modified "2023-09-24" @default.
- W60695964 title "Statistical Inference when using Data Adaptive Estimators of Nuisance Parameters" @default.
- W60695964 cites W1041910 @default.
- W60695964 cites W128574488 @default.
- W60695964 cites W1525651898 @default.
- W60695964 cites W1572302037 @default.
- W60695964 cites W1926541588 @default.
- W60695964 cites W1967862917 @default.
- W60695964 cites W1977389736 @default.
- W60695964 cites W1987152354 @default.
- W60695964 cites W1987716761 @default.
- W60695964 cites W2008557562 @default.
- W60695964 cites W2014373672 @default.
- W60695964 cites W2018331991 @default.
- W60695964 cites W2022450888 @default.
- W60695964 cites W2032038468 @default.
- W60695964 cites W2032481853 @default.
- W60695964 cites W2051375321 @default.
- W60695964 cites W2078439407 @default.
- W60695964 cites W2080896439 @default.
- W60695964 cites W2101895213 @default.
- W60695964 cites W2107263285 @default.
- W60695964 cites W2117845059 @default.
- W60695964 cites W2136304036 @default.
- W60695964 cites W2146895648 @default.
- W60695964 cites W2168265006 @default.
- W60695964 cites W2168667982 @default.
- W60695964 cites W2214529849 @default.
- W60695964 cites W2269615221 @default.
- W60695964 cites W2796930163 @default.
- W60695964 cites W51467624 @default.
- W60695964 cites W67506904 @default.
- W60695964 cites W70543736 @default.
- W60695964 hasPublicationYear "2012" @default.
- W60695964 type Work @default.
- W60695964 sameAs 60695964 @default.
- W60695964 citedByCount "2" @default.
- W60695964 countsByYear W606959642014 @default.
- W60695964 countsByYear W606959642018 @default.
- W60695964 crossrefType "journal-article" @default.
- W60695964 hasAuthorship W60695964A5038659463 @default.
- W60695964 hasAuthorship W60695964A5052387898 @default.
- W60695964 hasConcept C105795698 @default.
- W60695964 hasConcept C119043178 @default.
- W60695964 hasConcept C134261354 @default.
- W60695964 hasConcept C143791395 @default.
- W60695964 hasConcept C149782125 @default.
- W60695964 hasConcept C154945302 @default.
- W60695964 hasConcept C185429906 @default.
- W60695964 hasConcept C194531419 @default.
- W60695964 hasConcept C2776214188 @default.
- W60695964 hasConcept C33923547 @default.
- W60695964 hasConcept C41008148 @default.
- W60695964 hasConcept C68805675 @default.
- W60695964 hasConcept C89337504 @default.
- W60695964 hasConceptScore W60695964C105795698 @default.
- W60695964 hasConceptScore W60695964C119043178 @default.
- W60695964 hasConceptScore W60695964C134261354 @default.
- W60695964 hasConceptScore W60695964C143791395 @default.
- W60695964 hasConceptScore W60695964C149782125 @default.
- W60695964 hasConceptScore W60695964C154945302 @default.
- W60695964 hasConceptScore W60695964C185429906 @default.
- W60695964 hasConceptScore W60695964C194531419 @default.
- W60695964 hasConceptScore W60695964C2776214188 @default.
- W60695964 hasConceptScore W60695964C33923547 @default.
- W60695964 hasConceptScore W60695964C41008148 @default.
- W60695964 hasConceptScore W60695964C68805675 @default.
- W60695964 hasConceptScore W60695964C89337504 @default.
- W60695964 hasLocation W606959641 @default.
- W60695964 hasOpenAccess W60695964 @default.
- W60695964 hasPrimaryLocation W606959641 @default.
- W60695964 hasRelatedWork W1491925385 @default.
- W60695964 hasRelatedWork W1511585280 @default.
- W60695964 hasRelatedWork W1572302037 @default.
- W60695964 hasRelatedWork W1585579741 @default.
- W60695964 hasRelatedWork W1769167394 @default.
- W60695964 hasRelatedWork W177316566 @default.
- W60695964 hasRelatedWork W186605966 @default.
- W60695964 hasRelatedWork W1903155986 @default.
- W60695964 hasRelatedWork W1980147980 @default.
- W60695964 hasRelatedWork W2016787617 @default.
- W60695964 hasRelatedWork W2026224381 @default.
- W60695964 hasRelatedWork W2079692463 @default.
- W60695964 hasRelatedWork W2090053755 @default.
- W60695964 hasRelatedWork W2111084117 @default.
- W60695964 hasRelatedWork W2317300597 @default.
- W60695964 hasRelatedWork W2903930366 @default.
- W60695964 hasRelatedWork W34646028 @default.
- W60695964 hasRelatedWork W2185498988 @default.
- W60695964 hasRelatedWork W287332667 @default.
- W60695964 hasRelatedWork W3142375018 @default.
- W60695964 isParatext "false" @default.
- W60695964 isRetracted "false" @default.
- W60695964 magId "60695964" @default.
- W60695964 workType "article" @default.