Matches in SemOpenAlex for { <https://semopenalex.org/work/W607316917> ?p ?o ?g. }
- W607316917 endingPage "641" @default.
- W607316917 startingPage "628" @default.
- W607316917 abstract "Preterm birth is often associated with impaired brain development. The state and expected progression of preterm brain development can be evaluated using quantitative assessment of MR images. Such measurements require accurate segmentation of different tissue types in those images. This paper presents an algorithm for the automatic segmentation of unmyelinated white matter (WM), cortical grey matter (GM), and cerebrospinal fluid in the extracerebral space (CSF). The algorithm uses supervised voxel classification in three subsequent stages. In the first stage, voxels that can easily be assigned to one of the three tissue types are labelled. In the second stage, dedicated analysis of the remaining voxels is performed. The first and the second stages both use two-class classification for each tissue type separately. Possible inconsistencies that could result from these tissue-specific segmentation stages are resolved in the third stage, which performs multi-class classification. A set of T1- and T2-weighted images was analysed, but the optimised system performs automatic segmentation using a T2-weighted image only. We have investigated the performance of the algorithm when using training data randomly selected from completely annotated images as well as when using training data from only partially annotated images. The method was evaluated on images of preterm infants acquired at 30 and 40weeks postmenstrual age (PMA). When the method was trained using random selection from the completely annotated images, the average Dice coefficients were 0.95 for WM, 0.81 for GM, and 0.89 for CSF on an independent set of images acquired at 30weeks PMA. When the method was trained using only the partially annotated images, the average Dice coefficients were 0.95 for WM, 0.78 for GM and 0.87 for CSF for the images acquired at 30weeks PMA, and 0.92 for WM, 0.80 for GM and 0.85 for CSF for the images acquired at 40weeks PMA. Even though the segmentations obtained using training data from the partially annotated images resulted in slightly lower Dice coefficients, the performance in all experiments was close to that of a second human expert (0.93 for WM, 0.79 for GM and 0.86 for CSF for the images acquired at 30weeks, and 0.94 for WM, 0.76 for GM and 0.87 for CSF for the images acquired at 40weeks). These results show that the presented method is robust to age and acquisition protocol and that it performs accurate segmentation of WM, GM, and CSF when the training data is extracted from complete annotations as well as when the training data is extracted from partial annotations only. This extends the applicability of the method by reducing the time and effort necessary to create training data in a population with different characteristics." @default.
- W607316917 created "2016-06-24" @default.
- W607316917 creator A5001186270 @default.
- W607316917 creator A5033933581 @default.
- W607316917 creator A5038391182 @default.
- W607316917 creator A5046616623 @default.
- W607316917 creator A5049062183 @default.
- W607316917 creator A5063490873 @default.
- W607316917 creator A5084070018 @default.
- W607316917 creator A5091885878 @default.
- W607316917 date "2015-09-01" @default.
- W607316917 modified "2023-10-01" @default.
- W607316917 title "Automatic segmentation of MR brain images of preterm infants using supervised classification" @default.
- W607316917 cites W1975192282 @default.
- W607316917 cites W1992537691 @default.
- W607316917 cites W1992998173 @default.
- W607316917 cites W1993947467 @default.
- W607316917 cites W2008564181 @default.
- W607316917 cites W2014915963 @default.
- W607316917 cites W2046105679 @default.
- W607316917 cites W2046142779 @default.
- W607316917 cites W2046985712 @default.
- W607316917 cites W2048700485 @default.
- W607316917 cites W2049571912 @default.
- W607316917 cites W2053383165 @default.
- W607316917 cites W2055190078 @default.
- W607316917 cites W2056983531 @default.
- W607316917 cites W2059911466 @default.
- W607316917 cites W2067065405 @default.
- W607316917 cites W2071881327 @default.
- W607316917 cites W2087502697 @default.
- W607316917 cites W2096002744 @default.
- W607316917 cites W2101217789 @default.
- W607316917 cites W2112457078 @default.
- W607316917 cites W2112927272 @default.
- W607316917 cites W2116895317 @default.
- W607316917 cites W2121236251 @default.
- W607316917 cites W2138716135 @default.
- W607316917 cites W2148633389 @default.
- W607316917 cites W2150357704 @default.
- W607316917 cites W2153635508 @default.
- W607316917 cites W2160754664 @default.
- W607316917 cites W4239510810 @default.
- W607316917 cites W4240721737 @default.
- W607316917 cites W769418922 @default.
- W607316917 doi "https://doi.org/10.1016/j.neuroimage.2015.06.007" @default.
- W607316917 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26057591" @default.
- W607316917 hasPublicationYear "2015" @default.
- W607316917 type Work @default.
- W607316917 sameAs 607316917 @default.
- W607316917 citedByCount "65" @default.
- W607316917 countsByYear W6073169172015 @default.
- W607316917 countsByYear W6073169172016 @default.
- W607316917 countsByYear W6073169172017 @default.
- W607316917 countsByYear W6073169172018 @default.
- W607316917 countsByYear W6073169172019 @default.
- W607316917 countsByYear W6073169172020 @default.
- W607316917 countsByYear W6073169172021 @default.
- W607316917 countsByYear W6073169172022 @default.
- W607316917 countsByYear W6073169172023 @default.
- W607316917 crossrefType "journal-article" @default.
- W607316917 hasAuthorship W607316917A5001186270 @default.
- W607316917 hasAuthorship W607316917A5033933581 @default.
- W607316917 hasAuthorship W607316917A5038391182 @default.
- W607316917 hasAuthorship W607316917A5046616623 @default.
- W607316917 hasAuthorship W607316917A5049062183 @default.
- W607316917 hasAuthorship W607316917A5063490873 @default.
- W607316917 hasAuthorship W607316917A5084070018 @default.
- W607316917 hasAuthorship W607316917A5091885878 @default.
- W607316917 hasConcept C124504099 @default.
- W607316917 hasConcept C126838900 @default.
- W607316917 hasConcept C143409427 @default.
- W607316917 hasConcept C153180895 @default.
- W607316917 hasConcept C154945302 @default.
- W607316917 hasConcept C163892561 @default.
- W607316917 hasConcept C2778013878 @default.
- W607316917 hasConcept C2781192897 @default.
- W607316917 hasConcept C41008148 @default.
- W607316917 hasConcept C54170458 @default.
- W607316917 hasConcept C58489278 @default.
- W607316917 hasConcept C71924100 @default.
- W607316917 hasConcept C89600930 @default.
- W607316917 hasConceptScore W607316917C124504099 @default.
- W607316917 hasConceptScore W607316917C126838900 @default.
- W607316917 hasConceptScore W607316917C143409427 @default.
- W607316917 hasConceptScore W607316917C153180895 @default.
- W607316917 hasConceptScore W607316917C154945302 @default.
- W607316917 hasConceptScore W607316917C163892561 @default.
- W607316917 hasConceptScore W607316917C2778013878 @default.
- W607316917 hasConceptScore W607316917C2781192897 @default.
- W607316917 hasConceptScore W607316917C41008148 @default.
- W607316917 hasConceptScore W607316917C54170458 @default.
- W607316917 hasConceptScore W607316917C58489278 @default.
- W607316917 hasConceptScore W607316917C71924100 @default.
- W607316917 hasConceptScore W607316917C89600930 @default.
- W607316917 hasLocation W6073169171 @default.
- W607316917 hasLocation W6073169172 @default.
- W607316917 hasOpenAccess W607316917 @default.