Matches in SemOpenAlex for { <https://semopenalex.org/work/W610817147> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W610817147 abstract "Optimization problems occur widely in various domains and are of great practical importance. Better solutions to optimization problems translate into increased production or efficiency, or less waste or error. As a result, the development of optimization algorithms is a large and active area of research. Although there is a large amount of theory and techniques for solving optimization problems, there are also many open issues and questions in understanding the relationship between optimization algorithms and the problems that they are applied to. In any optimization problem, the influence of each solution variable on the objective function, as well as the interactions between variables are very important. For example, if the variables in a problem are independent, then it might be efficiently solved by decomposition. If important dependencies exist between variables, an algorithm that is able to capture these dependencies may be able to exploit them to find good solutions. Alternatively, if a variable has a strong influence on the objective function, then an algorithm may be better off focussing its search on this variable, compared with another variable that has very little influence on the objective function. Estimation of Distribution Algorithms (EDAs) are a class of black-box optimization algorithms that learn and sample from a probabilistic model over the solution variables to carry out the search process. The explicit model in an EDA clearly specifies how the algorithm handles problem variables during the search process. A major focus in EDA research has been the incorporation of dependency modelling using models of varying complexity (e.g. probabilistic graphical models). The intuition behind this work is that if the algorithm model is capable and successful at capturing the structure of the problem, it will produce good performance on that problem. Experimental results have confirmed this intuition, for example EDAs that model dependency information have outperformed EDAs that do not model dependencies on certain problems. While EDAs have shown good performance results, little work has analysed the dynamics of EDA models in practice. In fact, it is not clear what kind of problem structure EDAs can successfully model, or to what extent it is necessary to successfully model problem structure in order to achieve good performance. To provide insight into these issues, a more detailed analysis of EDAs applied to specific problems is needed. In this thesis, an experimental methodology is proposed to analyse the features of variables in continuous optimization problems and continuous EDAs. The approach is based on sampling points from the problem fitness landscape and/or the history of points visited by an EDA during the search process. These samples are then analysed in three different ways, to identify key structural variables, variable dependencies and important variables. The techniques are used to analyse a variety of test problems and EDAs optimizing the same problem set. The results confirm that the interaction between variables is complex, varies across problems and gives useful insights into the performance of EDAs on these problems. The results are categorized into different problem/algorithm behaviour types. In continuous EDAs, a Gaussian distribution over continuous variables is commonly used, with several different covariance matrix structures ranging from diagonal i.e. Univariate Marginal Distribution Algorithm (UMDAc) to full i.e. Estimation of Multivariate Normal Algorithm (EMNAglobal). The modelling of key structural variables and correlations are already captured in standard EDAs. In contrast, so-called important variables are not identified by an EDA. In the final part of the thesis, a modified, screening EDA (sEDA) is presented which identifies important variables and uses this to control the degree of covariance modelling in the Gaussian EDA model. Compared to EMNAglobal, the algorithm provides improved numerical stability and can use a smaller selected population. Experimental results are presented to evaluate and compare the performance of the proposed algorithm to UMDAc and EMNAglobal. In its first formulation, sEDA requires a large number of function evaluations for high dimensional problems. To address this issue, a modified version of (sEDA-lite) is also proposed. Experimental results on a large set of high dimensional artificial and real-world representative problems evaluate the performance of the new algorithm and compare it with sEDA and EDA-MCC (EDA framework with Model Complexity Control), a related, recently proposed algorithm." @default.
- W610817147 created "2016-06-24" @default.
- W610817147 creator A5032399784 @default.
- W610817147 date "2015-05-20" @default.
- W610817147 modified "2023-10-17" @default.
- W610817147 title "Data-driven analysis of variables and dependencies in continuous optimization problems and estimation of distribution algorithms" @default.
- W610817147 cites W1491409125 @default.
- W610817147 cites W1545362774 @default.
- W610817147 cites W1603665682 @default.
- W610817147 cites W1987465876 @default.
- W610817147 cites W2029888690 @default.
- W610817147 cites W2047565885 @default.
- W610817147 cites W2051848379 @default.
- W610817147 cites W2057656582 @default.
- W610817147 cites W2064598375 @default.
- W610817147 cites W2092118978 @default.
- W610817147 cites W2113508859 @default.
- W610817147 cites W2132181343 @default.
- W610817147 cites W2137340484 @default.
- W610817147 cites W2151554678 @default.
- W610817147 cites W2159072510 @default.
- W610817147 cites W2610216665 @default.
- W610817147 cites W2952524952 @default.
- W610817147 cites W3099514962 @default.
- W610817147 doi "https://doi.org/10.14264/uql.2015.520" @default.
- W610817147 hasPublicationYear "2015" @default.
- W610817147 type Work @default.
- W610817147 sameAs 610817147 @default.
- W610817147 citedByCount "0" @default.
- W610817147 crossrefType "dissertation" @default.
- W610817147 hasAuthorship W610817147A5032399784 @default.
- W610817147 hasBestOaLocation W6108171472 @default.
- W610817147 hasConcept C11413529 @default.
- W610817147 hasConcept C126255220 @default.
- W610817147 hasConcept C134306372 @default.
- W610817147 hasConcept C137836250 @default.
- W610817147 hasConcept C14036430 @default.
- W610817147 hasConcept C162500139 @default.
- W610817147 hasConcept C165696696 @default.
- W610817147 hasConcept C182365436 @default.
- W610817147 hasConcept C33923547 @default.
- W610817147 hasConcept C38652104 @default.
- W610817147 hasConcept C41008148 @default.
- W610817147 hasConcept C78458016 @default.
- W610817147 hasConcept C86803240 @default.
- W610817147 hasConceptScore W610817147C11413529 @default.
- W610817147 hasConceptScore W610817147C126255220 @default.
- W610817147 hasConceptScore W610817147C134306372 @default.
- W610817147 hasConceptScore W610817147C137836250 @default.
- W610817147 hasConceptScore W610817147C14036430 @default.
- W610817147 hasConceptScore W610817147C162500139 @default.
- W610817147 hasConceptScore W610817147C165696696 @default.
- W610817147 hasConceptScore W610817147C182365436 @default.
- W610817147 hasConceptScore W610817147C33923547 @default.
- W610817147 hasConceptScore W610817147C38652104 @default.
- W610817147 hasConceptScore W610817147C41008148 @default.
- W610817147 hasConceptScore W610817147C78458016 @default.
- W610817147 hasConceptScore W610817147C86803240 @default.
- W610817147 hasLocation W6108171471 @default.
- W610817147 hasLocation W6108171472 @default.
- W610817147 hasOpenAccess W610817147 @default.
- W610817147 hasPrimaryLocation W6108171471 @default.
- W610817147 hasRelatedWork W153611926 @default.
- W610817147 hasRelatedWork W1583536749 @default.
- W610817147 hasRelatedWork W173424 @default.
- W610817147 hasRelatedWork W2001503742 @default.
- W610817147 hasRelatedWork W2002580285 @default.
- W610817147 hasRelatedWork W2042211031 @default.
- W610817147 hasRelatedWork W2043658563 @default.
- W610817147 hasRelatedWork W2047565885 @default.
- W610817147 hasRelatedWork W2069816717 @default.
- W610817147 hasRelatedWork W2072746758 @default.
- W610817147 hasRelatedWork W2107711243 @default.
- W610817147 hasRelatedWork W2169718889 @default.
- W610817147 hasRelatedWork W2376408785 @default.
- W610817147 hasRelatedWork W2529429190 @default.
- W610817147 hasRelatedWork W2584119522 @default.
- W610817147 hasRelatedWork W2734430578 @default.
- W610817147 hasRelatedWork W2768617563 @default.
- W610817147 hasRelatedWork W2782494491 @default.
- W610817147 hasRelatedWork W2883961991 @default.
- W610817147 hasRelatedWork W2884636259 @default.
- W610817147 isParatext "false" @default.
- W610817147 isRetracted "false" @default.
- W610817147 magId "610817147" @default.
- W610817147 workType "dissertation" @default.