Matches in SemOpenAlex for { <https://semopenalex.org/work/W611373386> ?p ?o ?g. }
- W611373386 endingPage "180" @default.
- W611373386 startingPage "168" @default.
- W611373386 abstract "This study is for the first time to explore the possible effects of dietary tryptophan (Trp) on structural integrity and the related signalling factor gene expression in the gill of young grass carp (Ctenopharyngodon idella). Fish were fed with six different experimental diets containing graded levels of Trp at 0.7 (control), 1.7, 3.1, 4.0, 5.2 and 6.1 g kg(-1) diet for 8 weeks. The results firstly demonstrated that Trp deficiency or excess caused increases in reactive oxygen species (ROS) contents, and severe oxidative damage (lipid peroxidation and protein oxidation) in the gill of fish, and those negative effects could be reversed by optimal Trp levels. Secondly, compared with the optimal Trp levels, Trp deficiency could cause decreases in the mRNA levels of the barrier functional proteins (occludin, zonula occludens-1, claudin-c, and -3) and increases in the mRNA levels of the pore-formation proteins (claudin-12 and -15) mRNA levels in the gill of fish, and those were reversed by the optimal levels of Trp. The negative effects of Trp deficiency on those tight junction protein gene expression might be partly related to the increases in the mRNA levels of pro-inflammatory cytokines and related signalling factors (tumor necrosis factor α, interleukin 8, interleukin 1β and transcription factor-κB) and decreases in the mRNA levels of anti-inflammatory cytokines and related signalling factors [interleukin 10, transforming growth factor-β1, nuclear inhibitor factor κBα (iκBα), target of rapamyc and ribosome protein S6 kinase 1 (S6K1)] in the gill of fish. In addition, optimal dietary Trp protected the gill of fish against its deficiency-caused increases in the mRNA levels of the apoptosis signalling (caspase-3, caspase-8, caspase-9) and decreases in anti-superoxide radicals capacity, anti-hydroxyl radical capacity, glutathione contents and the activities of Cu/Zn superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione-S-transferase (GST) in the gill of fish. Additionally, compared with the Trp deficiency, optimal Trp up-regulated the mRNA levels of SOD, CAT, GPx, GR and GST, which might be partly ascribed to the up-regulation of the NF-E2-related factor 2 (Nrf2) mRNA levels and the down-regulation of Kelch-like-ECH-associated protein 1 (Keap1) mRNA levels in the gill of fish. Interestingly, excessive Trp caused similar results with its deficiency. Collectively, Trp deficiency or excess could cause antioxidant system disruption and change tight junction protein transcription abundances, which were partly related to the signalling factors, NF-κB p65, TOR, caspase-(3,8,9) and Nrf2, in fish gill, those could be blocked by the optimal Trp levels." @default.
- W611373386 created "2016-06-24" @default.
- W611373386 creator A5023363049 @default.
- W611373386 creator A5027278305 @default.
- W611373386 creator A5028083286 @default.
- W611373386 creator A5030866369 @default.
- W611373386 creator A5042930226 @default.
- W611373386 creator A5049926988 @default.
- W611373386 creator A5050444931 @default.
- W611373386 creator A5059214840 @default.
- W611373386 creator A5072798792 @default.
- W611373386 creator A5074820309 @default.
- W611373386 creator A5083527243 @default.
- W611373386 creator A5084940588 @default.
- W611373386 date "2015-10-01" @default.
- W611373386 modified "2023-09-22" @default.
- W611373386 title "The tight junction protein transcript abundance changes and oxidative damage by tryptophan deficiency or excess are related to the modulation of the signalling molecules, NF-κB p65, TOR, caspase-(3,8,9) and Nrf2 mRNA levels, in the gill of young grass carp (Ctenopharyngodon idellus)" @default.
- W611373386 cites W1533811499 @default.
- W611373386 cites W1543561630 @default.
- W611373386 cites W1618627661 @default.
- W611373386 cites W1965186395 @default.
- W611373386 cites W1966397178 @default.
- W611373386 cites W1971555098 @default.
- W611373386 cites W1979922906 @default.
- W611373386 cites W1983039678 @default.
- W611373386 cites W1983135948 @default.
- W611373386 cites W1983961754 @default.
- W611373386 cites W1984768507 @default.
- W611373386 cites W1985272428 @default.
- W611373386 cites W1988518686 @default.
- W611373386 cites W1996159346 @default.
- W611373386 cites W1999281888 @default.
- W611373386 cites W1999854306 @default.
- W611373386 cites W2004871189 @default.
- W611373386 cites W2008757142 @default.
- W611373386 cites W2019254002 @default.
- W611373386 cites W2020407536 @default.
- W611373386 cites W2020487253 @default.
- W611373386 cites W2020882728 @default.
- W611373386 cites W2023820554 @default.
- W611373386 cites W2024979614 @default.
- W611373386 cites W2025578881 @default.
- W611373386 cites W2028789107 @default.
- W611373386 cites W2028801940 @default.
- W611373386 cites W2029535496 @default.
- W611373386 cites W2030019992 @default.
- W611373386 cites W2038132658 @default.
- W611373386 cites W2038649419 @default.
- W611373386 cites W2039031569 @default.
- W611373386 cites W2040740667 @default.
- W611373386 cites W2041292212 @default.
- W611373386 cites W2043752997 @default.
- W611373386 cites W2043935380 @default.
- W611373386 cites W2046910373 @default.
- W611373386 cites W2047429667 @default.
- W611373386 cites W2050775539 @default.
- W611373386 cites W2051309543 @default.
- W611373386 cites W2052521727 @default.
- W611373386 cites W2053585642 @default.
- W611373386 cites W2054856852 @default.
- W611373386 cites W2055773854 @default.
- W611373386 cites W2057760804 @default.
- W611373386 cites W2058079107 @default.
- W611373386 cites W2065239092 @default.
- W611373386 cites W2067950073 @default.
- W611373386 cites W2069493185 @default.
- W611373386 cites W2069794343 @default.
- W611373386 cites W2072078248 @default.
- W611373386 cites W2072622931 @default.
- W611373386 cites W2073353302 @default.
- W611373386 cites W2074305443 @default.
- W611373386 cites W2074854211 @default.
- W611373386 cites W2085205617 @default.
- W611373386 cites W2086557921 @default.
- W611373386 cites W2091472261 @default.
- W611373386 cites W2092568663 @default.
- W611373386 cites W2093611544 @default.
- W611373386 cites W2094018125 @default.
- W611373386 cites W2102623742 @default.
- W611373386 cites W2106307355 @default.
- W611373386 cites W2107277218 @default.
- W611373386 cites W2107357628 @default.
- W611373386 cites W2119121198 @default.
- W611373386 cites W2121809298 @default.
- W611373386 cites W2132226772 @default.
- W611373386 cites W2133538175 @default.
- W611373386 cites W2141710693 @default.
- W611373386 cites W2147924866 @default.
- W611373386 cites W2152845474 @default.
- W611373386 cites W2154251920 @default.
- W611373386 cites W2157933963 @default.
- W611373386 cites W2161789287 @default.
- W611373386 cites W2161982997 @default.
- W611373386 cites W2184366236 @default.
- W611373386 cites W4293247451 @default.
- W611373386 doi "https://doi.org/10.1016/j.fsi.2015.06.002" @default.
- W611373386 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26057461" @default.
- W611373386 hasPublicationYear "2015" @default.