Matches in SemOpenAlex for { <https://semopenalex.org/work/W611457968> ?p ?o ?g. }
- W611457968 endingPage "565" @default.
- W611457968 startingPage "549" @default.
- W611457968 abstract "The semantic image segmentation task presents a trade-off between test time accuracy and training time annotation cost. Detailed per-pixel annotations enable training accurate models but are very time-consuming to obtain; image-level class labels are an order of magnitude cheaper but result in less accurate models. We take a natural step from image-level annotation towards stronger supervision: we ask annotators to point to an object if one exists. We incorporate this point supervision along with a novel objectness potential in the training loss function of a CNN model. Experimental results on the PASCAL VOC 2012 benchmark reveal that the combined effect of point-level supervision and objectness potential yields an improvement of $$12.9,%$$ mIOU over image-level supervision. Further, we demonstrate that models trained with point-level supervision are more accurate than models trained with image-level, squiggle-level or full supervision given a fixed annotation budget." @default.
- W611457968 created "2016-06-24" @default.
- W611457968 creator A5003940396 @default.
- W611457968 creator A5022811687 @default.
- W611457968 creator A5027461678 @default.
- W611457968 creator A5082946919 @default.
- W611457968 date "2016-01-01" @default.
- W611457968 modified "2023-10-15" @default.
- W611457968 title "What’s the Point: Semantic Segmentation with Point Supervision" @default.
- W611457968 cites W1495267108 @default.
- W611457968 cites W1500578644 @default.
- W611457968 cites W1507506748 @default.
- W611457968 cites W1745334888 @default.
- W611457968 cites W1783315696 @default.
- W611457968 cites W1861492603 @default.
- W611457968 cites W1903029394 @default.
- W611457968 cites W1908985308 @default.
- W611457968 cites W1927251054 @default.
- W611457968 cites W1945608308 @default.
- W611457968 cites W1953465585 @default.
- W611457968 cites W1987920017 @default.
- W611457968 cites W1993433125 @default.
- W611457968 cites W2006104434 @default.
- W611457968 cites W2017691720 @default.
- W611457968 cites W2022508996 @default.
- W611457968 cites W2026581312 @default.
- W611457968 cites W2031489346 @default.
- W611457968 cites W2036765125 @default.
- W611457968 cites W2041291076 @default.
- W611457968 cites W2050952849 @default.
- W611457968 cites W2066624635 @default.
- W611457968 cites W2086052791 @default.
- W611457968 cites W2102605133 @default.
- W611457968 cites W2117539524 @default.
- W611457968 cites W2117741877 @default.
- W611457968 cites W2136242795 @default.
- W611457968 cites W2144794286 @default.
- W611457968 cites W2155893237 @default.
- W611457968 cites W2158427031 @default.
- W611457968 cites W2169374938 @default.
- W611457968 cites W2221898772 @default.
- W611457968 cites W2229419338 @default.
- W611457968 cites W2337429362 @default.
- W611457968 cites W4248635988 @default.
- W611457968 cites W67472587 @default.
- W611457968 doi "https://doi.org/10.1007/978-3-319-46478-7_34" @default.
- W611457968 hasPublicationYear "2016" @default.
- W611457968 type Work @default.
- W611457968 sameAs 611457968 @default.
- W611457968 citedByCount "376" @default.
- W611457968 countsByYear W6114579682015 @default.
- W611457968 countsByYear W6114579682016 @default.
- W611457968 countsByYear W6114579682017 @default.
- W611457968 countsByYear W6114579682018 @default.
- W611457968 countsByYear W6114579682019 @default.
- W611457968 countsByYear W6114579682020 @default.
- W611457968 countsByYear W6114579682021 @default.
- W611457968 countsByYear W6114579682022 @default.
- W611457968 countsByYear W6114579682023 @default.
- W611457968 crossrefType "book-chapter" @default.
- W611457968 hasAuthorship W611457968A5003940396 @default.
- W611457968 hasAuthorship W611457968A5022811687 @default.
- W611457968 hasAuthorship W611457968A5027461678 @default.
- W611457968 hasAuthorship W611457968A5082946919 @default.
- W611457968 hasBestOaLocation W6114579682 @default.
- W611457968 hasConcept C115961682 @default.
- W611457968 hasConcept C119857082 @default.
- W611457968 hasConcept C127413603 @default.
- W611457968 hasConcept C13280743 @default.
- W611457968 hasConcept C153180895 @default.
- W611457968 hasConcept C154945302 @default.
- W611457968 hasConcept C160633673 @default.
- W611457968 hasConcept C185798385 @default.
- W611457968 hasConcept C199360897 @default.
- W611457968 hasConcept C201995342 @default.
- W611457968 hasConcept C205649164 @default.
- W611457968 hasConcept C2524010 @default.
- W611457968 hasConcept C2776321320 @default.
- W611457968 hasConcept C2777212361 @default.
- W611457968 hasConcept C2780451532 @default.
- W611457968 hasConcept C28719098 @default.
- W611457968 hasConcept C31972630 @default.
- W611457968 hasConcept C33923547 @default.
- W611457968 hasConcept C41008148 @default.
- W611457968 hasConcept C75608658 @default.
- W611457968 hasConcept C89600930 @default.
- W611457968 hasConceptScore W611457968C115961682 @default.
- W611457968 hasConceptScore W611457968C119857082 @default.
- W611457968 hasConceptScore W611457968C127413603 @default.
- W611457968 hasConceptScore W611457968C13280743 @default.
- W611457968 hasConceptScore W611457968C153180895 @default.
- W611457968 hasConceptScore W611457968C154945302 @default.
- W611457968 hasConceptScore W611457968C160633673 @default.
- W611457968 hasConceptScore W611457968C185798385 @default.
- W611457968 hasConceptScore W611457968C199360897 @default.
- W611457968 hasConceptScore W611457968C201995342 @default.
- W611457968 hasConceptScore W611457968C205649164 @default.
- W611457968 hasConceptScore W611457968C2524010 @default.