Matches in SemOpenAlex for { <https://semopenalex.org/work/W61271034> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W61271034 endingPage "388" @default.
- W61271034 startingPage "383" @default.
- W61271034 abstract "On internet today, an overabundance of information can be accessed, making it difficult for users to process and evaluate options and make appropriate choices. This phenomenon is known as information overload. Over time, various methods of information filtering have been introduced in order to assist users in choosing what may be of their interest. Recommender Systems (RS) [14] are techniques for information filtering which play an important role in e-commerce, advertising, e-mail filtering, etc. Therefore, RS are an answer, though partial, to the problem of information overload. Recommendation algorithms need to be continuously updated because of a constant increase in both the quantity of information and ways of access to that information, which define the different contexts of information use. The research of more effective and more efficient methods than those currently known in literature is also stimulated by the interests of industrial research in this field, as demonstrated by the Netflix Prize Contest, the open competition for the best algorithm to predict user ratings for films, based on previous ratings. The contest showed the superiority of mathematical methods that discover latent factors which drives user-item similarity, with respect to classical collaborative filtering algorithms. With the ever-increasing information available in digital archives and textual databases, the challenge of implementing personalized filters has become the challenge of designing algorithms able to manage huge amounts of data for the elicitation of user needs and preferences. In recent years, matrix factorization techniques have proved to be a quite promising solution to the problem of designing efficient filtering algorithms in the Big Data Era. The main contribution of this paper is an analysis of these methods, which focuses on tensor factorization techniques, as well as the definition of a method for tensor factorization suitable for recommender systems." @default.
- W61271034 created "2016-06-24" @default.
- W61271034 creator A5006695338 @default.
- W61271034 creator A5020864885 @default.
- W61271034 creator A5059814300 @default.
- W61271034 date "2014-01-01" @default.
- W61271034 modified "2023-09-25" @default.
- W61271034 title "Mathematical Methods of Tensor Factorization Applied to Recommender Systems" @default.
- W61271034 cites W1615057313 @default.
- W61271034 cites W1690919088 @default.
- W61271034 cites W1994389483 @default.
- W61271034 cites W1999956270 @default.
- W61271034 cites W2000215628 @default.
- W61271034 cites W2013912476 @default.
- W61271034 cites W2024165284 @default.
- W61271034 cites W2054141820 @default.
- W61271034 cites W2056088289 @default.
- W61271034 cites W2102937240 @default.
- W61271034 cites W2111363262 @default.
- W61271034 cites W2112430581 @default.
- W61271034 cites W2141280932 @default.
- W61271034 doi "https://doi.org/10.1007/978-3-319-01863-8_40" @default.
- W61271034 hasPublicationYear "2014" @default.
- W61271034 type Work @default.
- W61271034 sameAs 61271034 @default.
- W61271034 citedByCount "0" @default.
- W61271034 crossrefType "book-chapter" @default.
- W61271034 hasAuthorship W61271034A5006695338 @default.
- W61271034 hasAuthorship W61271034A5020864885 @default.
- W61271034 hasAuthorship W61271034A5059814300 @default.
- W61271034 hasConcept C11413529 @default.
- W61271034 hasConcept C155281189 @default.
- W61271034 hasConcept C187834632 @default.
- W61271034 hasConcept C202444582 @default.
- W61271034 hasConcept C23123220 @default.
- W61271034 hasConcept C33923547 @default.
- W61271034 hasConcept C41008148 @default.
- W61271034 hasConcept C557471498 @default.
- W61271034 hasConceptScore W61271034C11413529 @default.
- W61271034 hasConceptScore W61271034C155281189 @default.
- W61271034 hasConceptScore W61271034C187834632 @default.
- W61271034 hasConceptScore W61271034C202444582 @default.
- W61271034 hasConceptScore W61271034C23123220 @default.
- W61271034 hasConceptScore W61271034C33923547 @default.
- W61271034 hasConceptScore W61271034C41008148 @default.
- W61271034 hasConceptScore W61271034C557471498 @default.
- W61271034 hasLocation W612710341 @default.
- W61271034 hasOpenAccess W61271034 @default.
- W61271034 hasPrimaryLocation W612710341 @default.
- W61271034 hasRelatedWork W123932431 @default.
- W61271034 hasRelatedWork W2102937240 @default.
- W61271034 hasRelatedWork W2168119613 @default.
- W61271034 hasRelatedWork W2390779293 @default.
- W61271034 hasRelatedWork W2508935523 @default.
- W61271034 hasRelatedWork W3087605274 @default.
- W61271034 hasRelatedWork W3119551859 @default.
- W61271034 hasRelatedWork W3205872836 @default.
- W61271034 hasRelatedWork W3213449325 @default.
- W61271034 hasRelatedWork W4245745307 @default.
- W61271034 isParatext "false" @default.
- W61271034 isRetracted "false" @default.
- W61271034 magId "61271034" @default.
- W61271034 workType "book-chapter" @default.