Matches in SemOpenAlex for { <https://semopenalex.org/work/W613121520> ?p ?o ?g. }
- W613121520 endingPage "369" @default.
- W613121520 startingPage "361" @default.
- W613121520 abstract "Deep structured output learning shows great promise in tasks like semantic image segmentation. We proffer a new, efficient deep structured model learning scheme, in which we show how deep Convolutional Neural Networks (CNNs) can be used to directly estimate the messages in message passing inference for structured prediction with Conditional Random Fields (CRFs). With such CNN message estimators, we obviate the need to learn or evaluate potential functions for message calculation. This confers significant efficiency for learning, since otherwise when performing structured learning for a CRF with CNN potentials it is necessary to undertake expensive inference for every stochastic gradient iteration. The network output dimension of message estimators is the same as the number of classes, rather than exponentially growing in the order of the potentials. Hence it is more scalable for cases that involve a large number of classes. We apply our method to semantic image segmentation and achieve impressive performance, which demonstrates the effectiveness and usefulness of our CNN message learning method." @default.
- W613121520 created "2016-06-24" @default.
- W613121520 creator A5006294869 @default.
- W613121520 creator A5028024287 @default.
- W613121520 creator A5029912845 @default.
- W613121520 creator A5089444805 @default.
- W613121520 date "2015-12-07" @default.
- W613121520 modified "2023-09-24" @default.
- W613121520 title "Deeply learning the messages in message passing inference" @default.
- W613121520 cites W1507506748 @default.
- W613121520 cites W1529410181 @default.
- W613121520 cites W1569892065 @default.
- W613121520 cites W1686810756 @default.
- W613121520 cites W1745334888 @default.
- W613121520 cites W1803059841 @default.
- W613121520 cites W1857926807 @default.
- W613121520 cites W1903029394 @default.
- W613121520 cites W1963882359 @default.
- W613121520 cites W2031489346 @default.
- W613121520 cites W2053476892 @default.
- W613121520 cites W2070797946 @default.
- W613121520 cites W2098678088 @default.
- W613121520 cites W2102492119 @default.
- W613121520 cites W2124592697 @default.
- W613121520 cites W2125416623 @default.
- W613121520 cites W2136064009 @default.
- W613121520 cites W2136391815 @default.
- W613121520 cites W2144794286 @default.
- W613121520 cites W2161236525 @default.
- W613121520 cites W2164918853 @default.
- W613121520 cites W2221898772 @default.
- W613121520 cites W2928160594 @default.
- W613121520 cites W2949086864 @default.
- W613121520 cites W2952029950 @default.
- W613121520 cites W2964288706 @default.
- W613121520 hasPublicationYear "2015" @default.
- W613121520 type Work @default.
- W613121520 sameAs 613121520 @default.
- W613121520 citedByCount "16" @default.
- W613121520 countsByYear W6131215202016 @default.
- W613121520 countsByYear W6131215202018 @default.
- W613121520 countsByYear W6131215202019 @default.
- W613121520 countsByYear W6131215202020 @default.
- W613121520 countsByYear W6131215202021 @default.
- W613121520 crossrefType "proceedings-article" @default.
- W613121520 hasAuthorship W613121520A5006294869 @default.
- W613121520 hasAuthorship W613121520A5028024287 @default.
- W613121520 hasAuthorship W613121520A5029912845 @default.
- W613121520 hasAuthorship W613121520A5089444805 @default.
- W613121520 hasConcept C105795698 @default.
- W613121520 hasConcept C108583219 @default.
- W613121520 hasConcept C119857082 @default.
- W613121520 hasConcept C152565575 @default.
- W613121520 hasConcept C154945302 @default.
- W613121520 hasConcept C185429906 @default.
- W613121520 hasConcept C199360897 @default.
- W613121520 hasConcept C202444582 @default.
- W613121520 hasConcept C22367795 @default.
- W613121520 hasConcept C2775953691 @default.
- W613121520 hasConcept C2776214188 @default.
- W613121520 hasConcept C33676613 @default.
- W613121520 hasConcept C33923547 @default.
- W613121520 hasConcept C41008148 @default.
- W613121520 hasConcept C48044578 @default.
- W613121520 hasConcept C77088390 @default.
- W613121520 hasConcept C81363708 @default.
- W613121520 hasConcept C854659 @default.
- W613121520 hasConcept C89600930 @default.
- W613121520 hasConceptScore W613121520C105795698 @default.
- W613121520 hasConceptScore W613121520C108583219 @default.
- W613121520 hasConceptScore W613121520C119857082 @default.
- W613121520 hasConceptScore W613121520C152565575 @default.
- W613121520 hasConceptScore W613121520C154945302 @default.
- W613121520 hasConceptScore W613121520C185429906 @default.
- W613121520 hasConceptScore W613121520C199360897 @default.
- W613121520 hasConceptScore W613121520C202444582 @default.
- W613121520 hasConceptScore W613121520C22367795 @default.
- W613121520 hasConceptScore W613121520C2775953691 @default.
- W613121520 hasConceptScore W613121520C2776214188 @default.
- W613121520 hasConceptScore W613121520C33676613 @default.
- W613121520 hasConceptScore W613121520C33923547 @default.
- W613121520 hasConceptScore W613121520C41008148 @default.
- W613121520 hasConceptScore W613121520C48044578 @default.
- W613121520 hasConceptScore W613121520C77088390 @default.
- W613121520 hasConceptScore W613121520C81363708 @default.
- W613121520 hasConceptScore W613121520C854659 @default.
- W613121520 hasConceptScore W613121520C89600930 @default.
- W613121520 hasLocation W6131215201 @default.
- W613121520 hasOpenAccess W613121520 @default.
- W613121520 hasPrimaryLocation W6131215201 @default.
- W613121520 hasRelatedWork W1560512119 @default.
- W613121520 hasRelatedWork W1861492603 @default.
- W613121520 hasRelatedWork W1903029394 @default.
- W613121520 hasRelatedWork W1934021597 @default.
- W613121520 hasRelatedWork W2070797946 @default.
- W613121520 hasRelatedWork W2098678088 @default.
- W613121520 hasRelatedWork W2116341502 @default.
- W613121520 hasRelatedWork W2120340025 @default.