Matches in SemOpenAlex for { <https://semopenalex.org/work/W61631330> ?p ?o ?g. }
- W61631330 endingPage "483" @default.
- W61631330 startingPage "471" @default.
- W61631330 abstract "Recommending suitable routes to taxi drivers for picking up passengers is helpful to raise their incomes and reduce the gasoline consumption. In this paper, a pick-up tree based route recommender system is proposed to minimize the traveling distance without carrying passengers for a given taxis set. Firstly, we apply clustering approach to the GPS trajectory data of a large number of taxis that indicates state variance from “free” to “occupied”, and take the centroids as potential pick-up points. Secondly, we propose a heuristic based on skyline computation to construct a pick-up tree in which current position is its root node that connects all centroids. Then, we present a probability model to estimate gasoline consumption of every route. By adopting the estimated gasoline consumption as the weight of every route, the weighted Round-Robin recommendation method for the set of taxis is proposed. Our experimental results on real-world taxi trajectories data set have shown that the proposed recommendation method effectively reduce the driving distance before carrying passengers, especially when the number of cabs becomes large. Meanwhile, the time-cost of our method is also lower than the existing methods." @default.
- W61631330 created "2016-06-24" @default.
- W61631330 creator A5003486125 @default.
- W61631330 creator A5010567079 @default.
- W61631330 creator A5052283470 @default.
- W61631330 creator A5055651378 @default.
- W61631330 creator A5060815634 @default.
- W61631330 creator A5063565261 @default.
- W61631330 date "2012-01-01" @default.
- W61631330 modified "2023-10-16" @default.
- W61631330 title "Pick-Up Tree Based Route Recommendation from Taxi Trajectories" @default.
- W61631330 cites W1974506500 @default.
- W61631330 cites W1994912512 @default.
- W61631330 cites W2012506084 @default.
- W61631330 cites W2031674781 @default.
- W61631330 cites W2033593649 @default.
- W61631330 cites W2045563097 @default.
- W61631330 cites W2060680295 @default.
- W61631330 cites W2063920058 @default.
- W61631330 cites W2073794668 @default.
- W61631330 cites W2097268493 @default.
- W61631330 cites W2106558516 @default.
- W61631330 cites W2117618130 @default.
- W61631330 cites W2138198492 @default.
- W61631330 cites W2143157063 @default.
- W61631330 cites W2146831356 @default.
- W61631330 cites W2167686542 @default.
- W61631330 cites W2168884627 @default.
- W61631330 cites W2169896292 @default.
- W61631330 cites W2172041433 @default.
- W61631330 doi "https://doi.org/10.1007/978-3-642-32281-5_45" @default.
- W61631330 hasPublicationYear "2012" @default.
- W61631330 type Work @default.
- W61631330 sameAs 61631330 @default.
- W61631330 citedByCount "20" @default.
- W61631330 countsByYear W616313302014 @default.
- W61631330 countsByYear W616313302015 @default.
- W61631330 countsByYear W616313302016 @default.
- W61631330 countsByYear W616313302017 @default.
- W61631330 countsByYear W616313302018 @default.
- W61631330 countsByYear W616313302019 @default.
- W61631330 countsByYear W616313302020 @default.
- W61631330 countsByYear W616313302021 @default.
- W61631330 countsByYear W616313302022 @default.
- W61631330 countsByYear W616313302023 @default.
- W61631330 crossrefType "book-chapter" @default.
- W61631330 hasAuthorship W61631330A5003486125 @default.
- W61631330 hasAuthorship W61631330A5010567079 @default.
- W61631330 hasAuthorship W61631330A5052283470 @default.
- W61631330 hasAuthorship W61631330A5055651378 @default.
- W61631330 hasAuthorship W61631330A5060815634 @default.
- W61631330 hasAuthorship W61631330A5063565261 @default.
- W61631330 hasConcept C10138342 @default.
- W61631330 hasConcept C113174947 @default.
- W61631330 hasConcept C121332964 @default.
- W61631330 hasConcept C124101348 @default.
- W61631330 hasConcept C127413603 @default.
- W61631330 hasConcept C1276947 @default.
- W61631330 hasConcept C134306372 @default.
- W61631330 hasConcept C13662910 @default.
- W61631330 hasConcept C146599234 @default.
- W61631330 hasConcept C154945302 @default.
- W61631330 hasConcept C162324750 @default.
- W61631330 hasConcept C173801870 @default.
- W61631330 hasConcept C177264268 @default.
- W61631330 hasConcept C183373512 @default.
- W61631330 hasConcept C198082294 @default.
- W61631330 hasConcept C199360897 @default.
- W61631330 hasConcept C22212356 @default.
- W61631330 hasConcept C2777735758 @default.
- W61631330 hasConcept C2780757406 @default.
- W61631330 hasConcept C31258907 @default.
- W61631330 hasConcept C33923547 @default.
- W61631330 hasConcept C41008148 @default.
- W61631330 hasConcept C60229501 @default.
- W61631330 hasConcept C62611344 @default.
- W61631330 hasConcept C66938386 @default.
- W61631330 hasConcept C73555534 @default.
- W61631330 hasConcept C76155785 @default.
- W61631330 hasConceptScore W61631330C10138342 @default.
- W61631330 hasConceptScore W61631330C113174947 @default.
- W61631330 hasConceptScore W61631330C121332964 @default.
- W61631330 hasConceptScore W61631330C124101348 @default.
- W61631330 hasConceptScore W61631330C127413603 @default.
- W61631330 hasConceptScore W61631330C1276947 @default.
- W61631330 hasConceptScore W61631330C134306372 @default.
- W61631330 hasConceptScore W61631330C13662910 @default.
- W61631330 hasConceptScore W61631330C146599234 @default.
- W61631330 hasConceptScore W61631330C154945302 @default.
- W61631330 hasConceptScore W61631330C162324750 @default.
- W61631330 hasConceptScore W61631330C173801870 @default.
- W61631330 hasConceptScore W61631330C177264268 @default.
- W61631330 hasConceptScore W61631330C183373512 @default.
- W61631330 hasConceptScore W61631330C198082294 @default.
- W61631330 hasConceptScore W61631330C199360897 @default.
- W61631330 hasConceptScore W61631330C22212356 @default.
- W61631330 hasConceptScore W61631330C2777735758 @default.
- W61631330 hasConceptScore W61631330C2780757406 @default.