Matches in SemOpenAlex for { <https://semopenalex.org/work/W61743726> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W61743726 abstract "The civil applications of Unmanned Aerial Vehicle (UAV) technology are constantly on a rise and the safety rules for the operation of UAVs in populated areas are being drafted. The UAV technology is an active area of academic research due to the challenges related to aerodynamics, tight power and payload budgets, multi-sensor information fusion, reactive real-time path planning, perception and communication bandwidth requirements. Autonomous navigation is a complex problem due to the challenges of algorithmic complexity and their real-time implementation. The challenges like long-term GPS errors/outage/jamming and exponential error growth in inertial sensors increase the complexity of autonomous navigation to an extent that high level of redundancy is mandatory in the design of navigation systems. Typical UAV systems use multi-sensor (GPS + INS +Vision) data fusion coupled with responsive sensors, innovative navigation algorithms, computationally capable onboard computers and reactive electromechanical systems to accomplish the navigational needs of safe operations in urban environments. Machine learning is a very promising technology and has broad applicability in the many real-life problems: ranging from hand-held & wearable computers to intelligent cars and homes. It can be efficiently used in autonomous navigation of UAVs. This work presents a novel absolute position estimation solution that leverages Radial Basis Function (RBF) classifier for robust aerial image registration. The proposed solution covers the entire spectrum of the problem involving algorithm design, hardware architecture and real-time hardware implementation. The system relies on single passive imaging source for acquisition of aerial images. The sensed image is geometrically transformed to bring it in a common view point as the reference satellite image. The orthorectified aerial image is then learned by the RBF network and full search is performed in the Region of Interest (ROI) of the reference satellite image. The real-time implementation of computationally intensive algorithm is accomplished by designing a customized wide data path in Field Programmable Gate Array (FPGA). The proposed architecture offers a reliable drift-free position estimation solution by conglomerating information from the inertial sensors and geo-registration of the aerial images over a geodetically aligned satellite reference image. We compare the robustness of our proposed matching algorithm with the standard normalized area correlation techniques and present limitations and False Acceptance Rates (FAR) of the two algorithms. This analysis has been performed on a set of real aerial and satellite imagery, acquired under different lightening and weather conditions. This is then followed by a discussion on real-time FPGA based architecture and power analysis. We conclude by presenting future directions of the work. Keywords: Inertial Measurement Units, Vision based Navigation, Real-time implementation, FPGA, Neural Network" @default.
- W61743726 created "2016-06-24" @default.
- W61743726 creator A5014419197 @default.
- W61743726 date "2014-01-01" @default.
- W61743726 modified "2023-10-16" @default.
- W61743726 title "A Real-time Absolute Position Estimation Architecture for Autonomous Aerial Robots using Artificial Neural Networks" @default.
- W61743726 hasPublicationYear "2014" @default.
- W61743726 type Work @default.
- W61743726 sameAs 61743726 @default.
- W61743726 citedByCount "0" @default.
- W61743726 crossrefType "dissertation" @default.
- W61743726 hasAuthorship W61743726A5014419197 @default.
- W61743726 hasConcept C111919701 @default.
- W61743726 hasConcept C115051666 @default.
- W61743726 hasConcept C127413603 @default.
- W61743726 hasConcept C152124472 @default.
- W61743726 hasConcept C154945302 @default.
- W61743726 hasConcept C31972630 @default.
- W61743726 hasConcept C33954974 @default.
- W61743726 hasConcept C41008148 @default.
- W61743726 hasConcept C60229501 @default.
- W61743726 hasConcept C76155785 @default.
- W61743726 hasConcept C79403827 @default.
- W61743726 hasConcept C81074085 @default.
- W61743726 hasConcept C90509273 @default.
- W61743726 hasConceptScore W61743726C111919701 @default.
- W61743726 hasConceptScore W61743726C115051666 @default.
- W61743726 hasConceptScore W61743726C127413603 @default.
- W61743726 hasConceptScore W61743726C152124472 @default.
- W61743726 hasConceptScore W61743726C154945302 @default.
- W61743726 hasConceptScore W61743726C31972630 @default.
- W61743726 hasConceptScore W61743726C33954974 @default.
- W61743726 hasConceptScore W61743726C41008148 @default.
- W61743726 hasConceptScore W61743726C60229501 @default.
- W61743726 hasConceptScore W61743726C76155785 @default.
- W61743726 hasConceptScore W61743726C79403827 @default.
- W61743726 hasConceptScore W61743726C81074085 @default.
- W61743726 hasConceptScore W61743726C90509273 @default.
- W61743726 hasLocation W617437261 @default.
- W61743726 hasOpenAccess W61743726 @default.
- W61743726 hasPrimaryLocation W617437261 @default.
- W61743726 hasRelatedWork W1505528089 @default.
- W61743726 hasRelatedWork W2052615011 @default.
- W61743726 hasRelatedWork W2085680365 @default.
- W61743726 hasRelatedWork W2102793753 @default.
- W61743726 hasRelatedWork W2114671377 @default.
- W61743726 hasRelatedWork W2213239089 @default.
- W61743726 hasRelatedWork W2269827958 @default.
- W61743726 hasRelatedWork W2324257779 @default.
- W61743726 hasRelatedWork W2401507303 @default.
- W61743726 hasRelatedWork W2545482755 @default.
- W61743726 hasRelatedWork W2610214014 @default.
- W61743726 hasRelatedWork W2897261996 @default.
- W61743726 hasRelatedWork W2948279750 @default.
- W61743726 hasRelatedWork W3008046551 @default.
- W61743726 hasRelatedWork W3011211521 @default.
- W61743726 hasRelatedWork W3099926063 @default.
- W61743726 hasRelatedWork W3102368068 @default.
- W61743726 hasRelatedWork W3130168513 @default.
- W61743726 hasRelatedWork W3190788949 @default.
- W61743726 hasRelatedWork W42949429 @default.
- W61743726 isParatext "false" @default.
- W61743726 isRetracted "false" @default.
- W61743726 magId "61743726" @default.
- W61743726 workType "dissertation" @default.